What does a group know?

Scandinavian Logic Symposium 2014
Tampere 26 August 2014
Thomas Ågotnes
University of Bergen, Norway
Southwest University, China

IIL

Based on joint works with

- Philippe Balbiani
- Hans van Ditmarsch
- Tim French
- Wiebe van der Hoek
- Pablo Seban
- Dmitry Shkatov
- Yi Wang
- Mike Wooldridge
- ...

Outline

- Background: group knowledge
- Generalised distributed knowledge
- Resolving distributed knowledge
- Public announcement logic with distributed knowledge
- Quantifying over group announcements
- The power of knowledge

Background: Group Knowledge

In all of the following we assume given

a finite set $N=\{1, \ldots, n\}$ of agents
a countably infinite set of primitive propositions

Epistemic logic

A model is a tuple $M=\left\langle W, \sim_{1}, \ldots, \sim_{n}, V\right\rangle$:

- W is a set of states
- \sim_{i} is an epistemic accessibility relation
- Sometimes assumed to be an equivalence relation (S5)
- Sometimes assumed to be transitive, euclidian and serial (KD45)
- V is a valuation function, assigning primitive propositions to each state

Epistemic logic

Language: $\phi::=p\left|K_{i} \phi\right| \neg \phi \mid \phi_{1} \wedge \phi_{2}$

Interpretation: $(M, s) \models K_{i} \phi$ iff for all t s.t. $s \sim_{i} t,(M, t) \models \phi$

Epistemic logic

Language: $\phi::=p\left|K_{i} \phi\right| \neg \phi \mid \phi_{1} \wedge \phi_{2}$

Interpretation: $(M, s) \models K_{i} \phi$ iff for all t s.t. $s \sim_{i} t,(M, t) \models \phi$

$$
\bullet p, \neg q, \neg r
$$

Epistemic logic

Language: $\phi::=p\left|K_{i} \phi\right| \neg \phi \mid \phi_{1} \wedge \phi_{2}$

Interpretation: $(M, s) \models K_{i} \phi$ iff for all t s.t. $s \sim_{i} t,(M, t) \models \phi$

$$
\bullet p, \neg q, \neg r
$$

Epistemic logic

Language: $\phi::=p\left|K_{i} \phi\right| \neg \phi \mid \phi_{1} \wedge \phi_{2}$

Interpretation: $(M, s) \models K_{i} \phi$ iff for all t s.t. $s \sim_{i} t,(M, t) \models \phi$

$$
\bullet p, \neg q, \neg r
$$

$$
\begin{aligned}
& M \because \ddots . \quad M, s \vDash \neg K_{T} p \\
& \text { - } \neg p, \neg q, r \\
& M, s \models K_{M}(p \rightarrow q)
\end{aligned}
$$

What does a group know?

What does a group know?

$(M, s) \models E_{G} \phi$ iff $s \sim_{G}^{E} t \Rightarrow(M, t) \models \phi$, where $\sim_{G}^{E}=\bigcup_{i \in G} \sim_{i}$

What does a group know?

$(M, s) \models E_{G} \phi$ iff $s \sim_{G}^{E} t \Rightarrow(M, t) \models \phi$, where $\sim_{G}^{E}=\bigcup_{i \in G} \sim_{i}$
$(M, s) \models C_{G} \phi$ iff $s \sim_{G}^{C} t \Rightarrow(M, t) \models \phi$, where $\sim_{G}^{C}=\left(\bigcup_{i \in G} \sim_{i}\right)^{*}$

What does a group know?

$(M, s) \models E_{G} \phi$ iff $s \sim_{G}^{E} t \Rightarrow(M, t) \models \phi$, where $\sim_{G}^{E}=\bigcup_{i \in G} \sim_{i}$
$(M, s) \models C_{G} \phi$ iff $s \sim_{G}^{C} t \Rightarrow(M, t) \models \phi$, where $\sim_{G}^{C}=\left(\bigcup_{i \in G} \sim_{i}\right)^{*}$
$(M, s) \models D_{G} \phi$ iff $s \sim_{G}^{D} t \Rightarrow(M, t) \models \phi$, where $\sim_{G}^{D}=\bigcap_{i \in G} \sim_{i}$

What does a group know?

$(M, s) \models E_{G} \phi$ iff $s \sim_{G}^{E} t \Rightarrow(M, t) \models \phi$, where $\sim_{G}^{E}=\bigcup_{i \in G} \sim_{i}$ $(M, s) \models C_{G} \phi$ iff $s \sim_{G}^{C} t \Rightarrow(M, t) \models \phi$, where $\sim_{G}^{C}=\left(\bigcup_{i \in G} \sim_{i}\right)^{*}$ $(M, s) \models D_{G} \phi$ iff $s \sim_{G}^{D} t \Rightarrow(M, t) \models \phi$, where $\sim_{G}^{D}=\bigcap_{i \in G} \sim_{i}$

- $p, \neg q, \neg r$

- $\neg p, \neg q, r$

What does a group know?

$(M, s) \models E_{G} \phi$ iff $s \sim_{G}^{E} t \Rightarrow(M, t) \models \phi$, where $\sim_{G}^{E}=\bigcup_{i \in G} \sim_{i}$ $(M, s) \models C_{G} \phi$ iff $s \sim_{G}^{C} t \Rightarrow(M, t) \models \phi$, where $\sim_{G}^{C}=\left(\bigcup_{i \in G} \sim_{i}\right)^{*}$ $(M, s) \models D_{G} \phi$ iff $s \sim_{G}^{D} t \Rightarrow(M, t) \models \phi$, where $\sim_{G}^{D}=\bigcap_{i \in G} \sim_{i}$

What does a group know?

$(M, s) \models E_{G} \phi$ iff $s \sim_{G}^{E} t \Rightarrow(M, t) \models \phi$, where $\sim_{G}^{E}=\bigcup_{i \in G} \sim_{i}$ $(M, s) \models C_{G} \phi$ iff $s \sim_{G}^{C} t \Rightarrow(M, t) \models \phi$, where $\sim_{G}^{C}=\left(\bigcup_{i \in G} \sim_{i}\right)^{*}$ $(M, s) \models D_{G} \phi$ iff $s \sim_{G}^{D} t \Rightarrow(M, t) \models \phi$, where $\sim_{G}^{D}=\bigcap_{i \in G} \sim_{i}$

Distributed Knowledge: Key Axioms

$$
D_{A} \phi \rightarrow D_{B} \phi \text { when } A \subseteq B
$$

$$
D_{\{a\}} \phi \leftrightarrow K_{a} \phi
$$

Generalised Distributed Knowledge

Distributed knowledge

$$
\sim_{G}^{D}=\bigcap_{i \in G} \sim_{i}
$$

Distributed knowledge

$$
\sim_{G}^{D}=\bigcap_{i \in G} \sim_{i}
$$

- In other words, the group considers a state
- impossible iff at least one member of the group considers it impossible
- possible iff all the agents in the group considers it possible

Distributed knowledge

$$
\sim_{G}^{D}=\bigcap_{i \in G} \sim_{i}
$$

- In other words, the group considers a state
- impossible iff at least one member of the group considers it impossible
- possible iff all the agents in the group considers it possible
- For S5 agents this makes sense
- If an S5 agent considers a state impossible, then it is impossible
- .. and this is common knowledge

Distributed knowledge for non-S5 agents

$$
\sim_{G}^{D}=\bigcap_{i \in G} \sim_{i}
$$

- The group considers a state
- impossible iff at least one member of the group considers it impossible
- possible iff all the agents in the group considers it possible
- For non-S5 agents, in particular agents without T/reflexivity (e.g., KD45):
- If one agent considers a state impossible, that agent might in fact be wrong
- Ruling out a state based on the evidence of a single agent is then a very credulous group attitude
- Curious asymmetry between the evidence need for possibility vs. impossibility
- impossibility: every agent is a veto voter, possibility: unanimity

Distributed knowledge for non-S5 agents

$$
\sim_{G}^{D}=\bigcap_{i \in G} \sim_{i}
$$

- The group
- impos Wait a moment!
- possit Does distributed knowledge even make
- For non-〔sense for non-S5 agents?
- If one

The KD45 properties are not closed under

- Ruling credul intersection!
- Curious asymmetry between the evidence need for possibility vs. impossibility
- impossibility: every agent is a veto voter, possibility: unanimity

Distributed knowledge for non-S5 agents

$$
\sim_{G}^{D}=\bigcap_{i \in G} \sim_{i}
$$

- The group considers a state
- impossible iff at least one member of the group considers it impossible
- possible iff all the agents in the group considers it possible
- For non-S5 agents, in particular agents without T/reflexivity (e.g., KD45):
- If one agent considers a state impossible, that agent might in fact be wrong
- Ruling out a state based on the evidence of a single agent is then a very credulous group attitude
- Curious asymmetry between the evidence need for possibility vs. impossibility
- impossibility: every agent is a veto voter, possibility: unanimity

Generalised distributed knowledge (Ågotnes and Shkatov, 2014)

- In this work we look at general definitions of distributed knowledge where we vary the evidence needed for the two cases

Generalised Distributed Knowledge

- The group considers a state
- impossible iff not at least k agents in the group considers it impossible
- possible iff at least k agents in the group considers it possible

The generalised distributed knowledge operator

$$
M, s \models D_{G}^{+k} \phi \Leftrightarrow \forall(s, t) \in \sim_{G}^{+k} M, t \models \phi
$$

$$
\sim_{G}^{+k}=\bigcup_{H \subseteq G,|H| \geq k} \bigcap_{i \in H} \sim_{i}
$$

Generalised Distributed Knowledge

- The group considers a state
- impossible iff not at least k agents in the group considers it impossible
- possible iff at least k agents in the group considers it possible

The generalised distributed knowledge operator

$$
\begin{aligned}
& \sim_{G}^{+k}=\bigcup_{H \subseteq G,|H| \geq k} \bigcap_{i \in H} \sim_{i} \\
& \text { E.g. }, \sim_{G}^{m a j}=\sim_{G}^{+\lceil(|G|+1) / 2\rceil}
\end{aligned}
$$

Expressive power and succinctness

$$
\phi::=p|\neg \phi| \phi \wedge \phi\left|K_{i} \phi\right| D_{G} \phi \mid D_{G}^{+k} \phi
$$

Expressive power and succinctness

$$
\phi::=p|\neg \phi| \phi \wedge \phi\left|K_{i} \phi\right| D_{G} \phi \mid D_{G}^{+k} \phi
$$

$$
(M, s) \models D_{G}^{+k} \phi \Leftrightarrow(M, s) \models \bigwedge_{H \subseteq G,|H| \geq k} D_{H} \phi
$$

Generalised distributed knowledge in Epistemic Logic with Quantification over Coalitions

- Epistemic Logic with Quantification over Coalitions (Ågotnes, van der Hoek and Wooldridge, 2008) use coalition predicates to allow more succinct epistemic expressions
- Can express generalised distributed knowledge succinctly:

$$
\begin{gathered}
(M, s) \models D_{G}^{+k} \phi \Leftrightarrow(M, s) \models \bigwedge_{H \subseteq G,|H| \geq k} D_{H} \phi \\
\Leftrightarrow(M, s) \models[\operatorname{geq}(k) \wedge \operatorname{subseteq}(G)]_{D} \phi
\end{gathered}
$$

Generalised distributed knowledge

- Not more expressive than standard distributed knowledge
- But exponentially more succinct

Generalised distributed knowledge: the extremes

$$
\sim_{G}^{+k}=\bigcup_{H \subseteq G,|H| \geq k} \bigcap_{i \in H} \sim_{i}
$$

Generalised distributed knowledge: the extremes

$$
\sim_{G}^{+k}=\bigcup_{H \subseteq G,|H| \geq k} \bigcap_{i \in H} \sim_{i}
$$

$\bullet \mathrm{k}=|\mathrm{G}|$: the group considers a state

- impossible iff at least one member of the group considers it impossible
- possible iff all the agents in the group considers it possible

Generalised distributed knowledge: the extremes

$$
\sim_{G}^{+k}=\bigcup_{H \subseteq G,|H| \geq k} \bigcap_{i \in H} \sim_{i}
$$

- $\mathrm{k}=|\mathrm{G}|$: the group considers a state
- impossible iff at least one member of the group considers it impossible
- possible iff all the agents in the group considers it possible
- $\mathrm{k}=1$: the group considers a state
- impossible iff all agents in the group considers it impossible
- possible at least one agent in the group considers it possible

Generalised distributed knowledge: the extremes

$$
\sim_{G}^{+k}=\bigcup_{H \subseteq G,|H| \geq k} \bigcap_{i \in H} \sim_{i}
$$

- $\mathrm{k}=|\mathrm{G}|$: the group considers a state

$$
\sim_{G}^{+|G|}=\sim{ }_{G}^{D}
$$

- impossible iff at least one member of the group considers it impossible
- possible if standard distributed knowledge ole
- $\mathrm{k}=1$: the group considers a state
- impossible iff all agents in the group considers it impossible
- possible at least one agent in the group considers it possible

Generalised distributed knowledge: the extremes

$$
\sim_{G}^{+k}=\bigcup_{H \subseteq G,|H| \geq k} \bigcap_{i \in H} \sim_{i}
$$

- $\mathrm{k}=|\mathrm{G}|$: the group considers a state

$$
\sim_{G}^{+|G|}=\sim{ }_{G}^{D}
$$

- impossible iff at least one member of the group considers it impossible
- possible if standard distributed knowledge ole
- $\mathrm{k}=1$: the group considers a state

$$
\sim_{G}^{+1}=\sim{ }_{G}^{E}
$$

- impossible iff all agents in the group considers it impossible
- possil general knowledge (everybody knows)

Generalised distributed knowledge: conclusions

- Between distributed and general knowledge
- Intuitively two entirely different concepts
- But we show that the difference between them can be explained quantitatively rather than qualitatively
- Specific instances of the same concept, corresponding to which voting threshold is used
- There is a scale of intermediate concepts between them

Resolving distributed knowledge

Distributed knowledge again

- Common interpretations of distributed knowledge:
- Knowledge the group could obtain if they had unlimited means of communication
- "A group has distributed knowledge of a fact phi if the knowledge of phi is distributed among its members, so that by pooling their knowledge together the members of the group can deduce phi ..."
- Clearly problematic, consider e.g.,

Distributed knowledge again

- Common interpretations of distributed knowledge:
- Knowledge the group could obtain if they had unlimited means of communication
- "A group has distributed knowledge of a fact phi if the knowledge of phi is distributed among its members, so that by pooling their knowledge together the members of the group can deduce phi ..."
- Clearly problematic, consider e.g.,

$$
D_{1,2}\left(p \wedge \neg K_{1} p\right)
$$

Distributed knowledge again

- Common interpretations of distributed knowledge:
- Knowledge the group could obtain if they had unlimited means of communication
- "A group has distributed knowledge of a fact phi if the knowledge of phi is distributed among its members, so that by pooling their knowledge together the members of the group can deduce phi ..."
- Clearly problematic, consider e.g.,

1,2

$$
D_{1,2}\left(p \wedge \neg K_{1} p\right)
$$

\bullet_{v}^{p}

1
$\bullet{ }_{w}{ }^{p}$

Resolving distributed knowledge (Ågotnes and Wang, 2014)

- Logics with distributed knowledge do not reason about what happens when the group actually share their information
- In this work we introduce a new modality, saying that a formula is true after the group have shared their information - after their distributed knowledge has been resolved

Resolving distributed knowledge (Ågotnes and Wang, 2014)

- Logics with distributed knowledge do not reason about what happens when the group actually share their information
- In this work we introduce a new modality, saying that a formula is true after the group have shared their information - after their distributed knowledge has been resolved

Resolving distributed knowledge (Ågotnes and Wang, 2014)

- Logics with distributed knowledge do not reason about what happens when the group actually share their information
- In this work we introduce a new modality, saying that a formula is true after the group have shared their information - after their distributed knowledge has been resolved

Resolving distributed knowledge (Ågotnes and Wang, 2014)

- Logics with distributed knowledge do not reason about what happens when the group actually share their information
- In this work we introduce a new modality, saying that a formula is true after the group have shared their information - after their distributed knowledge has been resolved

$$
\begin{array}{cc}
M, t \vDash D_{1,2}\left(p \wedge \neg K_{1} p\right) & \vdots \\
\vdots & 1,2 \\
\bullet p & \vdots \\
\vdots & 1,2 \\
\vdots & \bullet p \\
v
\end{array}
$$

Resolving distributed knowledge (Ågotnes and Wang, 2014)

- Logics with distributed knowledge do not reason about what happens when the group actually share their information
- In this work we introduce a new modality, saying that a formula is true after the group have shared their information - after their distributed knowledge has been resolved

$$
\begin{array}{lcc}
M, t \equiv D_{1,2}\left(p \wedge \neg K_{1} p\right) & 1,2 & \\
M, t \models R_{1,2}\left(p \wedge K_{1} p\right) & \bullet_{v}^{p} & \bullet_{v}^{p} \\
& \stackrel{1}{v} & \\
& \bullet_{v}^{p} p & \text { "Communication } \\
\text { core" (van Benthem, 2011) }
\end{array}
$$

What do other agents know about the fact that a group G resolve their knowledge?

- Will focus here on one (of several) possibilities:
- It is common knowledge that G resolve their knowledge
- Semantics: global model update.

Resolving distributed knowledge

$M=\left(S, \sim_{1}, \ldots, \sim_{n}, V\right)(S 5$ model $)$
For a group of agents G, the (global) G-resolved update of M is the model $\left.M\right|_{G}$ where $\left.M\right|_{G}=\left(S^{\prime}, \sim_{1}^{\prime}, \ldots, \sim_{n}^{\prime}, V^{\prime}\right)$ and

- $S^{\prime}=S$
- $\sim_{i}^{\prime}= \begin{cases}\bigcap_{j \in G} \sim_{j} & i \in G \\ \sim_{i} & \text { otherwise }\end{cases}$
- $V^{\prime}=V$

Logic

$$
\phi::=p|\neg \phi| \phi \wedge \phi\left|K_{i} \phi\right| D_{G} \phi \mid R_{G} \phi
$$

Logic

$$
\begin{gathered}
\phi::=p|\neg \phi| \phi \wedge \phi\left|K_{i} \phi\right| D_{G} \phi \mid R_{G} \phi \\
M,\left.s \models R_{G} \phi \quad \Leftrightarrow \quad M\right|_{G}, s \models \phi
\end{gathered}
$$

Axioms (S5)
The following are valid:

Axioms (S5)

The following are valid:

$$
R_{G} p \leftrightarrow p
$$

Axioms (S5)

The following are valid:

$$
\begin{aligned}
& R_{G} p \leftrightarrow p \\
& R_{G}(\phi \wedge \psi) \leftrightarrow R_{G} \phi \wedge R_{G} \psi
\end{aligned}
$$

Axioms (S5)

The following are valid:

$$
\begin{aligned}
& R_{G} p \leftrightarrow p \\
& R_{G}(\phi \wedge \psi) \leftrightarrow R_{G} \phi \wedge R_{G} \psi \\
& R_{G} \neg \phi \leftrightarrow \neg R_{G} \phi
\end{aligned}
$$

Axioms (S5)

The following are valid:
$R_{G} p \leftrightarrow p$
$R_{G}(\phi \wedge \psi) \leftrightarrow R_{G} \phi \wedge R_{G} \psi$
$R_{G} \neg \phi \leftrightarrow \neg R_{G} \phi$
$R_{G} K_{i} \phi \leftrightarrow K_{i} R_{G} \phi$, when $i \notin G$

Axioms (S5)

The following are valid:
$R_{G} p \leftrightarrow p$
$R_{G}(\phi \wedge \psi) \leftrightarrow R_{G} \phi \wedge R_{G} \psi$
$R_{G} \neg \phi \leftrightarrow \neg R_{G} \phi$
$R_{G} K_{i} \phi \leftrightarrow K_{i} R_{G} \phi$, when $i \notin G$
$R_{G} K_{i} \phi \leftrightarrow D_{G} R_{G} \phi$, when $i \in G$

Axioms (S5)

The following are valid:
$R_{G} p \leftrightarrow p$
$R_{G}(\phi \wedge \psi) \leftrightarrow R_{G} \phi \wedge R_{G} \psi$
$R_{G} \neg \phi \leftrightarrow \neg R_{G} \phi$
$R_{G} K_{i} \phi \leftrightarrow K_{i} R_{G} \phi$, when $i \notin G$
$R_{G} K_{i} \phi \leftrightarrow D_{G} R_{G} \phi$, when $i \in G$
$R_{G} D_{H} \phi \leftrightarrow D_{H} R_{G} \phi$, when $G \cap H=\emptyset$

Axioms (S5)

The following are valid:
$R_{G} p \leftrightarrow p$
$R_{G}(\phi \wedge \psi) \leftrightarrow R_{G} \phi \wedge R_{G} \psi$
$R_{G} \neg \phi \leftrightarrow \neg R_{G} \phi$
$R_{G} K_{i} \phi \leftrightarrow K_{i} R_{G} \phi$, when $i \notin G$
$R_{G} K_{i} \phi \leftrightarrow D_{G} R_{G} \phi$, when $i \in G$
$R_{G} D_{H} \phi \leftrightarrow D_{H} R_{G} \phi$, when $G \cap H=\emptyset$
$R_{G} D_{H} \phi \leftrightarrow D_{G \cup H} R_{G} \phi$, when $G \cap H \neq \emptyset$

Axioms (S5)

The following are valid:
$R_{G} p \leftrightarrow p$
$R_{G}(\phi \wedge \psi) \leftrightarrow R_{G} \phi \wedge R_{G} \psi$
$R_{G} \neg \phi \leftrightarrow \neg R_{G} \phi$
$R_{G} K_{i} \phi \leftrightarrow K_{i} R_{G} \phi$, when $i \notin G$
$R_{G} K_{i} \phi \leftrightarrow D_{G} R_{G} \phi$, when $i \in G$
$R_{G} D_{H} \phi \leftrightarrow D_{H} R_{G} \phi$, when $G \cap H=\emptyset$
$R_{G} D_{H} \phi \leftrightarrow D_{G \cup H} R_{G} \phi$, when $G \cap H \neq \emptyset$
But no similar reduction axiom for $R_{G} R_{H} \phi$ (in particular, not equivalent to $R_{G \cup H} \phi$)

Reduction axioms

Proposition: every formula is equivalent to one without resolution operators. The logic is axiomatised by adding the reduction axioms to an axiomatisation of S 5 with distributed knowledge.

Adding common knowledge

$$
\phi::=p|\neg \phi| \phi \wedge \phi\left|K_{i} \phi\right| D_{G} \phi\left|C_{G} \phi\right| R_{G} \phi
$$

Adding common knowledge

$$
\phi::=p|\neg \phi| \phi \wedge \phi\left|K_{i} \phi\right| D_{G} \phi\left|C_{G} \phi\right| R_{G} \phi
$$

What about reduction axioms?

Adding common knowledge

$$
\phi::=p|\neg \phi| \phi \wedge \phi\left|K_{i} \phi\right| D_{G} \phi\left|C_{G} \phi\right| R_{G} \phi
$$

What about reduction axioms?
For any $G \cap H=\emptyset$, the following is valid:

$$
R_{G} C_{H} \phi \leftrightarrow C_{H} R_{G} \phi
$$

Adding common knowledge

$$
\phi::=p|\neg \phi| \phi \wedge \phi\left|K_{i} \phi\right| D_{G} \phi\left|C_{G} \phi\right| R_{G} \phi
$$

What about reduction axioms?
For any $G \cap H=\emptyset$, the following is valid:

$$
R_{G} C_{H} \phi \leftrightarrow C_{H} R_{G} \phi
$$

For any $H \subseteq G$ and $i \in G$, the following is valid:

$$
R_{G} C_{H} \phi \leftrightarrow R_{G} K_{i} \phi \leftrightarrow D_{G} R_{G} \phi
$$

Common knowledge

In general $M, s \models R_{G} C_{H} \phi$ iff $\left.M\right|_{G}, t \models \phi$ for any $(s, t) \in \sim_{H}^{*^{\prime}}$, where

$$
\sim_{H}^{*^{\prime}}=\left(\bigcap_{i \in G} \sim_{i} \cup \bigcup_{i \in H \backslash G} \sim_{i}\right)^{*}
$$

- which does not seem to be expressible without the resolution operators

Sound and complete axiomatisation for the case with common and distributed knowledge

$$
\phi::=p|\neg \phi| \phi \wedge \phi\left|K_{i} \phi\right| D_{G} \phi\left|C_{G} \phi\right| R_{G} \phi
$$

$\left(\mathrm{K}_{C}\right) \quad C_{G}(\varphi \rightarrow \psi) \rightarrow\left(C_{G} \varphi \rightarrow C_{G} \psi\right)$
($\left.\mathrm{T}_{C}\right) \quad C_{G} \varphi \rightarrow \varphi$
(C1) $\quad C_{G} \varphi \rightarrow E_{G} C_{G} \varphi$
(C2) $\quad C_{G}\left(\varphi \rightarrow E_{G} \varphi\right) \rightarrow\left(\varphi \rightarrow C_{G} \varphi\right)$
$\left(\mathrm{N}_{C}\right) \quad$ from φ infer $C_{G} \varphi$.
(S5) classical proof system for multi-agent epistemic logic
(CK) axioms and rules for common knowledge
(DK) characterization axioms for distributed knowledge
$\left(\mathrm{N}_{R}\right) \quad$ from φ infer $R_{G} \varphi$
(RR) reduction axioms for resolution (see Proposition 1)
$\left(\mathrm{RR}_{C}\right) \quad$ from $\varphi \rightarrow\left(E_{H} \varphi \wedge R_{G_{0}} \cdots R_{G_{n}} E_{H} \psi\right)$ infer $\varphi \rightarrow R_{G_{0}} \cdots R_{G_{n}} C_{H} \psi$

Resolution: some open questions

- Expressive power:
- compare to PACD
- compare to languages with relativised common knowledge

Public Announcement Logics with Distributed Knowledge

Public Announcement Logic (Plaza, 1989)

$$
\varphi::=p\left|K_{i} \varphi\right| \neg \varphi\left|\varphi_{1} \wedge \varphi_{2}\right|\left\langle\varphi_{1}\right\rangle \varphi_{2}
$$

ϕ_{1} is true, and ϕ_{2} is true after ϕ_{1} is announced

Formally:

$$
\begin{array}{ll}
M=\left(S, \sim_{1}, \ldots, \sim_{n}, V\right) \quad \sim_{i} \text { equivalence rel. over } \mathrm{S} \\
M, s \models K_{i} \phi & \Leftrightarrow \quad \forall t \sim_{i} s M, t \models \phi \\
M, s \models\left\langle\phi_{1}\right\rangle \phi_{2} & \Leftrightarrow \quad M, s \models \phi_{1} \text { and } M \mid \phi_{1}, s \models \phi_{2}
\end{array}
$$

The model resulting from removing states where ϕ_{1} is false

Example

Example

$$
\bullet_{t} \neg p_{B}, p_{A} \quad \text { Ann } \ominus_{s}^{p_{B}, p_{A} \ldots \ldots \ldots \ldots \bullet_{u}^{p_{B}}, \neg p_{A}}
$$

Example

Example

$\bullet \neg p_{B}, p_{A} \quad A n n \quad \bullet_{S}^{p_{B}, p_{A}}$

Example

$\bullet{ }_{t} p_{B}, p_{A} \quad A n n \quad \bullet_{S}^{p_{B}, p_{A}}$
$M, s \models\left\langle K_{A} p_{A}\right\rangle K_{B} p_{A}$

Example

Public Announcement Logic with Distributed Knowledge (Wang and Ågotnes, 2013)

- Have not been studied until recently (Wang and Ågotnes, 2013)
- In this work we provide, for different variants of PAL extended with (common and) distributed knowledge
- Complete axiomatisations
- No surprises: just add standard axioms
- Characterisations of expressive power
- PAD is not more expressive than EL+D

$$
[\phi] D_{A} \psi \leftrightarrow\left(\phi \rightarrow D_{A}[\phi] \psi\right)
$$

- PACD is more expressive than both PAC and PAD
- Characterisations of computational complexity
- PACD: EXPTIME-complete

Public Announcement Logic with Distributed Knowledge: completeness proof

- Complications: must deal with, at the same time,
- S5 knowledge
- Distributed knowledge (intersection) not modally definable
- Common knowledge (not canonical)
- Public announcements
- Develop techniques that might be useful for other purposes (such as resolution operators!)

Group Announcement Logic

Group Announcement Logic (Ågotnes et al., 2010)

Group Announcement Logic extends public announcement logic with:
$\langle G\rangle \phi:$ "Group G can make an announcement

Quantification: announcements by an agent

$K_{i} \psi$

Quantification: announcements by an agent

$$
M, s \models\langle i\rangle \phi \Leftrightarrow \exists \psi M, s \models\left\langle K_{i} \psi\right\rangle \phi
$$

Quantification: announcements by a group

$$
M, s \models\langle G\rangle \phi \quad \Leftrightarrow \quad \exists\left\{\psi_{i}: i \in G\right\} M, s \models\left\langle\bigwedge_{i \in G} K_{i} \psi\right\rangle \phi
$$

Group Announcement Logic (GAL):

$$
\varphi::=p\left|K_{i} \varphi\right| \neg \varphi\left|\varphi_{1} \wedge \varphi_{2}\right|\left\langle\varphi_{1}\right\rangle \varphi_{2} \mid\langle G\rangle \phi
$$

Example: The Russian Cards Problem

From a pack of seven known cards $0,1,2,3,4,5,6$ Anne and Bill each draw three cards and Cath gets the remaining card. How can Anne and Bill openly inform each other about their cards, without Cath learning who holds any of their cards?

Example: The Russian Cards Problem

From a pack of seven known cards $0,1,2,3,4,5,6$ Anne and Bill each draw three cards and Cath gets the remaining card. How can Anne and Bill openly inform each other about their cards, without Cath learning who holds any of their cards?
Formalisation: $\quad 012_{a}$: "Ann has cards 0,1 and $2 "$

$$
\begin{aligned}
& \text { (one) } \bigwedge_{i j k}\left(i j k_{b} \rightarrow K_{a} i j k_{b}\right) \quad(\text { two }) \bigwedge_{i j k}\left(i j k_{a} \rightarrow K_{b} i j k_{a}\right) \\
& (\text { three }) \bigwedge_{q=0}^{6}\left(\left(q_{a} \rightarrow \neg K_{c} q_{a}\right) \wedge\left(q_{b} \rightarrow \neg K_{c} q_{b}\right)\right)
\end{aligned}
$$

Example: The Russian Cards Problem

From a pack of seven known cards $0,1,2,3,4,5,6$ Anne and Bill each draw three cards and Cath gets the remaining card. How can Anne and Bill openly inform each other about their cards, without Cath learning who holds any of their cards?
Formalisation: 012_{a} : "Ann has cards 0,1 and $2 "$

$$
\begin{aligned}
& (\text { one }) \bigwedge_{i j k}\left(i j k_{b} \rightarrow K_{a} i j k_{b}\right) \quad(\text { two }) \bigwedge_{i j k}\left(i j k_{a} \rightarrow K_{b} i j k_{a}\right) \\
& (\text { three }) \bigwedge_{q=0}^{6}\left(\left(q_{a} \rightarrow \neg K_{c} q_{a}\right) \wedge\left(q_{b} \rightarrow \neg K_{c} q_{b}\right)\right)
\end{aligned}
$$

Known anne $\equiv 012_{a} \vee 034_{a} \vee 056_{a} \vee 135_{a} \vee 246_{a}$ solution: bill $\equiv 345_{b} \vee 125_{b} \vee 024_{b}$

Example: The Russian Cards Problem

From a pack of seven known cards $0,1,2,3,4,5,6$ Anne and Bill each draw three cards and Cath gets the remaining card. How can Anne and Bill openly inform each other about their cards, without Cath learning who holds any of their cards?
Formalisation: $\quad 012_{a}:$ "Ann has cards 0,1 and 2 "

$$
\begin{aligned}
& (\text { one }) \bigwedge_{i j k}\left(i j k_{b} \rightarrow K_{a} i j k_{b}\right) \quad(\text { two }) \bigwedge_{i j k}\left(i j k_{a} \rightarrow K_{b} i j k_{a}\right) \\
& (\text { three }) \bigwedge_{q=0}^{6}\left(\left(q_{a} \rightarrow \neg K_{c} q_{a}\right) \wedge\left(q_{b} \rightarrow \neg K_{c} q_{b}\right)\right)
\end{aligned}
$$

Known anne $\equiv 012_{a} \vee 034_{a} \vee 056_{a} \vee 135_{a} \vee 246_{a}$ solution: bill $\equiv 345_{b} \vee 125_{b} \vee 024_{b}$

PAL:
$\left\langle K_{a} a n n e\right\rangle\left\langle K_{b} b i l l\right\rangle(o n e \wedge t w o \wedge t h r e e)$

Example: The Russian Cards Problem

From a pack of seven known cards $0,1,2,3,4,5,6$ Anne and Bill each draw three cards and Cath gets the remaining card. How can Anne and Bill openly inform each other about their cards, without Cath learning who holds any of their cards?
Formalisation: $012_{a}:$ "Ann has cards 0,1 and 2 "

$$
\begin{aligned}
& (\text { one }) \bigwedge_{i j k}\left(i j k_{b} \rightarrow K_{a} i j k_{b}\right) \quad(\text { two }) \bigwedge_{i j k}\left(i j k_{a} \rightarrow K_{b} i j k_{a}\right) \\
& (\text { three }) \bigwedge_{q=0}^{6}\left(\left(q_{a} \rightarrow \neg K_{c} q_{a}\right) \wedge\left(q_{b} \rightarrow \neg K_{c} q_{b}\right)\right)
\end{aligned}
$$

Known anne $\equiv 012_{a} \vee 034_{a} \vee 056_{a} \vee 135_{a} \vee 246_{a}$ solution: bill $\equiv 345_{b} \vee 125_{b} \vee 024_{b}$

PAL:
$\left\langle K_{a} a n n e\right\rangle\left\langle K_{b} b i l l\right\rangle(o n e \wedge t w o \wedge t h r e e)$
GAL:
$\langle a\rangle\langle b\rangle($ one \wedge two \wedge three)

Knowledge and Ability: general actions

- Consider the general case that agents have arbitrary joint actions (and not only group announcements) available, that will take the system to a new state
- Two variants of ability under incomplete information:
- Knowing de dicto that you can achive something: in all the states you consider possible, you can achive the goal (by performing some action)
- Knowing de re that you can achieve something: there is some action which will achieve the goal in all the states you consider possible

Knowledge and Ability: general actions

- Example: agent in front of a combination-lock safe; does not know the combination; correct combination is 123

Knowledge and Ability: general actions

- Example: agent in front of a combination-lock safe; does not know the combination; correct combination is 123

Knowledge and Ability: general actions

- Example: agent in front of a combination-lock safe; does not know the combination; correct combination is 123

Knowledge and Ability: general actions

- Example: agent in front of a combination-lock safe; does not know the combination; correct combination is 123

Expressing knowledge de dicto/de re

$$
\begin{array}{ccc}
\text { Ability } & \begin{array}{c}
\text { Knowledge of } \\
\text { ability, de dicto }
\end{array} & \begin{array}{c}
\text { Knowledge of } \\
\text { ability, de re }
\end{array} \\
\exists \psi s \models\left\langle K_{a} \psi\right\rangle \phi & \forall s \sim_{a} t \exists \psi t \models\left\langle K_{a} \psi\right\rangle \phi & \exists \psi \forall s \sim_{a} t t \models\left\langle K_{a} \psi\right\rangle \phi \\
s \models\langle a\rangle \phi & s \models K_{a}\langle a\rangle \phi & ? ?
\end{array}
$$

Expressing knowledge de dicto/de re

$$
\left.\begin{array}{cc}
\text { Ability } & \begin{array}{c}
\text { Knowledge of } \\
\text { ability, de dicto }
\end{array} \\
\exists \psi s \models\left\langle K_{a} \psi\right\rangle \phi & \forall s \sim_{a} t \exists \psi t \models\left\langle K_{a} \psi\right\rangle \phi
\end{array} \begin{array}{c}
\text { Knowledge of } \\
\text { ability, de re }
\end{array}\right] \psi \forall s \sim_{a} t t \equiv\left\langle K_{a} \psi\right\rangle \phi
$$

Expressing knowledge de dicto/de re

$$
\left.\begin{array}{cc}
\hline \text { Ability } & \begin{array}{c}
\text { Knowledge of } \\
\text { ability, de dicto }
\end{array} \\
\exists \psi s=\left\langle K_{a} \psi\right\rangle \phi & \forall s \sim_{a} t \exists \psi t \models\left\langle K_{a} \psi\right\rangle \phi
\end{array} \begin{array}{c}
\text { Knowledge of } \\
\text { ability, de re }
\end{array}\right] \psi \forall s \sim_{a} t=\left\langle K_{a} \psi\right\rangle \phi
$$

Expressing knowledge de dicto/de re

Ability
$\exists \psi s \models\left\langle K_{a} \psi\right\rangle \phi$

$s \models\langle a\rangle \phi$

Knowledge of ability, de dicto

Knowledge of ability, de re
$\forall s \sim_{a} t \exists \psi t \models\left\langle K_{a} \psi\right\rangle \phi \quad \exists \psi \forall s \sim_{a} t t \models\left\langle K_{a} \psi\right\rangle \phi$

$s \models K_{a}\langle a\rangle \phi$
Depends on
(1) the fact that actions are
announcements
(2) the S5 properties

$$
s \models\langle a\rangle K_{a} \phi
$$

$\exists \psi s \models\left\langle K_{a} \psi\right\rangle K_{a} \phi$

Group Announcement Logic: some key results

- Complete Hilbert-style axiomatisation (Ågotnes et al., 2010)
- Model checking: PSPACE-complete (Ågotnes et al., 2010)
- Satisfiability/validity: undecidable (co-RE) (Ågotnes, van Ditmarsch and French, 2014)

Sound and Complete Axiomatisation

$S 5_{n}$ axioms and rules
$P A L$ axioms and rules
$[G] \phi \rightarrow\left[\bigwedge_{i \in G} K_{i} \psi_{i}\right] \phi \quad$ where $\psi_{i} \in \mathcal{L}_{e l}$
From ϕ, infer $[G] \phi$
From $\phi \rightarrow[\theta]\left[\bigwedge_{i \in G} K_{i} p_{i}\right] \psi$, infer $\phi \rightarrow[\theta][G] \psi$ where $p_{i} \notin \Theta_{\phi} \cup \Theta_{\theta} \cup \Theta_{\psi}$

Undecidability of GAL: overview

Main steps:

1. enforcing the structure of a satisfying model to have a grid-like structure;
2. defining a formula to represent common knowledge;
3. using propositional atoms to represent tiles, express the formula "it is common knowledge that adjacent tiles on the grid have matching sides".

Undecidability of GAL: overview

Main steps:

1. enforci hel to have a grid-mes suthe,
2. defining a formula to represent common knowledge;
3. using propositional atoms to represent tiles, express the formula "it is common knowledge that adjacent tiles on the grid have matching sides".

Undecidability of GAL: overview

Main steps:

1. enforci

Ylel to have a grid-hin

2. defini ${ }^{r}$
3. usir th ti]

Undecidability of GAL: grid-like structures

Given: a set of tiles Γ

- 5 agents: East (e), West (w), North (\mathfrak{n}), South (\mathfrak{s}), and one agent that simulates the common knowledge of the other agents (\mathfrak{t}).
- Atomic propositions:
$-\odot, \boldsymbol{\infty}, \diamond$ and $\boldsymbol{\wedge}$
$-p_{\gamma}$, for each $\gamma \in \Gamma$

GAL: open problems

- (Un)ecidability for less than five agents
- Decidable fragments
- Expressive power compared to Arbitrary Public Announcement Logic (APAL):
- It is known that GAL is not as expressive as APAL
- Unknown: can APAL express everything GAL can express (in the multiagent case)?

Other things: what will they do?

- Which group announcements will rational agents actually make?
- Public announcement games
- Strategic form (Ågotnes and van Ditmarsch, 2011)
- Question-answer games (Ågotnes, van Benthem, van Ditmarsch and Minica, 2011)
- Coalitional (Ågotnes and van Ditmarsch, 2012)

Scientia Potentia Est: on the Power of Knowledge

Consider this scenario:

Consider this scenario:

M : knows that $p \rightarrow q T$: knows that $r \rightarrow q$

W : knows that $p \wedge r$
p : Robin received the letter
r : the sheriff is at home
q : Robin is by the great oak

Consider this scenario:

M : knows that $p \rightarrow q T$: knows that $r \rightarrow q$

W : knows that $p \wedge r$
p : Robin received the letter
r : the sheriff is at home
q : Robin is by the great oak

Consider this scenario:

M : knows that $p \rightarrow q T$: knows that $r \rightarrow q$

W : knows that $p \wedge r$
p : Robin received the letter
r : the sheriff is at home
q : Robin is by the great oak

Consider this scenario:

M : knows that $p \rightarrow q T$: knows that $r \rightarrow q$

W : knows that $p \wedge r$
p : Robin received the letter
r : the sheriff is at home
q : Robin is by the great oak Who has Who has the most important the most important information about the whereabouts of Robin?

Consider this scenario:

p : Robin received the letter
r : the sheriff is at home
q : Robin is by the great oak Who has the Who
has the most important information about the whereabouts of Robin if communication is possible?

Consider this scenario:

p : Robin received the letter
r : the sheriff is at home
q : Robin is by the great oak

has the most impo whereabouts of ${ }_{p}$

Scientia Potentia Est (Ågotnes, van der Hoek, Wooldridge, 2011)

- Study settings where: information about some objective ("Robin is at the great oak") is distributed among a group of agents, but is typically now known by any individual agent
- We combine:
- epistemic logic,
- voting games and power indices
- to measure how important an agent's information is in an arbitrary subgroup of all agents wrt. the objective
- Information-based power

Coalitional games

A coalitional game $\Gamma=\langle A g, \nu\rangle$:

- $A g=\{1, \ldots, n\}$: set of players
- $\nu: 2^{A g} \rightarrow \mathbb{R}$ is the characteristic function

Coalitional games

A coalitional game $\Gamma=\langle A g, \nu\rangle$:

- $A g=\{1, \ldots, n\}$: set of players
- $\nu: 2^{A g} \rightarrow \mathbb{R}$ is the characteristic function
Γ is simple: $\nu(C) \in\{0,1\}$ for all C

Coalitional games

A coalitional game $\Gamma=\langle A g, \nu\rangle$:

- $A g=\{1, \ldots, n\}$: set of players
- $\nu: 2^{A g} \rightarrow \mathbb{R}$ is the characteristic function
Γ is simple: $\nu(C) \in\{0,1\}$ for all C
$\nu(C)=1: C$ is winning

Power indices

$\operatorname{swing}(G, i)= \begin{cases}1 & \text { if } \nu(G)=0 \text { and } \nu(G \cup\{i\})=1 \\ 0 & \text { otherwise. }\end{cases}$

Power indices

$\operatorname{swing}(G, i)= \begin{cases}1 & \text { if } \nu(G)=0 \text { and } \nu(G \cup\{i\})=1 \\ 0 & \text { otherwise. }\end{cases}$
Banzhaf score for agent i :

$$
\sigma_{i}=\sum_{G \subseteq A g \backslash\{i\}} \operatorname{swing}(G, i)
$$

Power indices

$\operatorname{swing}(G, i)= \begin{cases}1 & \text { if } \nu(G)=0 \text { and } \nu(G \cup\{i\})=1 \\ 0 & \text { otherwise. }\end{cases}$
Banzhaf score for agent i :

$$
\sigma_{i}=\sum_{G \subseteq A g \backslash\{i\}} \operatorname{swing}(G, i)
$$

Banzhaf measure for agent i :

$$
\mu_{i}=\frac{\sigma_{i}}{2^{n-1}}
$$

Power indices

$\operatorname{swing}(G, i)= \begin{cases}1 & \text { if } \nu(G)=0 \text { and } \nu(G \cup\{i\})=1 \\ 0 & \text { otherwise. }\end{cases}$
Banzhaf score for agent i :

$$
\sigma_{i}=\sum_{G \subseteq A g \backslash\{i\}} \operatorname{swing}(G, i)
$$

Power indices

$\operatorname{swing}(G, i)= \begin{cases}1 & \text { if } \nu(G)=0 \text { and } \nu(G \cup\{i\})=1 \\ 0 & \text { otherwise. }\end{cases}$
Banzhaf score for agent i :

$$
\sigma_{i}=\sum_{G \subseteq A g \backslash\{i\}} \operatorname{swing}(G, i)
$$

Banzhaf index for agent i :

$$
\beta_{i}=\frac{\sigma_{i}}{\sum_{j \in A g} \sigma_{j}}
$$

Power in epistemic models

Given $S=\langle M, s, \chi\rangle$:

- M, s : pointed epistemic model
- χ : goal formula

Power in epistemic models

Given $S=\langle M, s, \chi\rangle$:

- M, s : pointed epistemic model
- χ : goal formula

$$
\nu_{S}^{D}(G)= \begin{cases}1 & M, s \models D_{G} \chi \\ 0 & \text { otherwise } .\end{cases}
$$

Power in epistemic models

Given $S=\langle M, s, \chi\rangle$:

- M, s : pointed epistemic model
- χ : goal formula

$$
\nu_{S}^{D}(G)= \begin{cases}1 & M, s \models D_{G} \chi \\ 0 & \text { otherwise } .\end{cases}
$$

Summing up

- Generalised distributed knowledge
- Resolving distributed knowledge
- Public announcement logic with distributed knowledge
- Group announcement logic
- Scientia Potentia Est

References

- Thomas Ågotnes and Dmitry Shkatov. Generalised Distributed Knowledge. 2014. Manuscript.
- Thomas Ågotnes and Yi Wang. Resolving Distributed Knowledge. 2014. Manuscript.
- Thomas Ågotnes, Hans van Ditmarsch and Tim French. The Undecidability of Group Announcements. In Proc. of AAMAS 2014.
- Yi Wang and Thomas Ågotnes. Public announcement logic with distributed knowledge: expressivity, completeness and complexity. Synthese, 190(1):135-162, 2013.
- Thomas Ågotnes, Wiebe van der Hoek and Michael Wooldridge. Scientia Potentia Est. In Proc. of AAMAS 2011.
- Yi Wang and Thomas Ågotnes. Public announcement logic with distributed knowledge. In Proc. of LORI 2011, volume 6953 of LNCS. Springer, 2011.
- Thomas Ågotnes, Philippe Balbiani, Hans van Ditmarsch and Pablo Seban. Group Announcement Logic. Journal of Applied Logic 8(1), 2010.
- Thomas Ågotnes and Hans van Ditmarsch. Coalitions and Announcements. Proc. of AAMAS, 2008.
- Thomas Ågotnes, Wiebe van der Hoek and Michael Wooldridge. Quantifying over Coalitions in Epistemic Logic. In Proc. of AAMAS 2008.

