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Background: Group Knowledge



In all of the following we assume given

a finite set N = {1, . . . , n} of agents

a countably infinite set of primitive propositions



Epistemic logic
A model is a tuple M = hW,⇠1, . . . ,⇠n, V i:

• W is a set of states

• ⇠i is an epistemic accessibility relation

– Sometimes assumed to be an equivalence rela-

tion (S5)

– Sometimes assumed to be transitive, euclidian

and serial (KD45)

• V is a valuation function, assigning primitive propo-

sitions to each state



Epistemic logic

Language: � ::= p | Ki� | ¬� | �1 ⇤ �2

Interpretation: (M, s) |= Ki� i� for all t s.t. s �i t, (M, t) |= �
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Epistemic logic

Language: � ::= p | Ki� | ¬� | �1 ⇤ �2
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Distributed Knowledge: Key Axioms

DA� ! DB� when A ✓ B

D{a}� $ Ka�



Generalised Distributed Knowledge
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Distributed knowledge

• In other words, the group considers a state

• impossible iff at least one member of the group considers it impossible

• possible iff all the agents in the group considers it possible

• For S5 agents this makes sense

• If an S5 agent considers a state impossible, then it is impossible

• .. and this is common knowledge
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T
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Distributed knowledge for non-S5 agents

• The group considers a state

• impossible iff at least one member of the group considers it impossible

• possible iff all the agents in the group considers it possible

• For non-S5 agents, in particular agents without T/reflexivity (e.g., KD45):

• If one agent considers a state impossible, that agent might in fact be wrong

• Ruling out a state based on the evidence of a single agent is then a very 
credulous group attitude

• Curious asymmetry between the evidence need for possibility vs. 
impossibility

• impossibility: every agent is a veto voter, possibility: unanimity 
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Wait a moment!

Does distributed knowledge even make 
sense for non-S5 agents?

The KD45 properties are not closed under 
intersection!
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Generalised distributed knowledge (Ågotnes and 
Shkatov, 2014)

• In this work we look at general definitions of distributed knowledge where we 
vary the evidence needed for the two cases
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• impossible iff not at least k agents in the group considers it impossible
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Generalised Distributed Knowledge

• The group considers a state

• impossible iff not at least k agents in the group considers it impossible

• possible iff at least k agents in the group considers it possible

M, s |= D+k
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G M, t |= �

⇠+k
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[
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\

i2H
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The 
generalised 
distributed 
knowledge 
operator E.g., ⇠maj

G =⇠+d(|G|+1)/2e
G
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Expressive power and succinctness

(M, s) |= D+k
G � , (M, s) |=

V
H✓G,|H|�k DH�

� ::= p | ¬� | � ^ � | Ki� | DG� | D+k
G �



Generalised distributed knowledge in Epistemic 
Logic with Quantification over Coalitions

• Epistemic Logic with Quantification over Coalitions (Ågotnes, van der Hoek 
and Wooldridge, 2008) use coalition predicates to allow more succinct 
epistemic expressions

• Can express generalised distributed knowledge succinctly:

(M, s) |= D+k
G � , (M, s) |=

V
H✓G,|H|�k DH�

, (M, s) |= [geq(k) ^ subseteq(G)]D�



Generalised distributed knowledge

• Not more expressive than standard distributed knowledge

• But exponentially more succinct
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⇠+k
G =

[

H✓G,|H|�k

\

i2H

⇠i



Generalised distributed knowledge: the extremes

• k = |G|: the group considers a state

• impossible iff at least one member of the group considers it impossible

• possible iff all the agents in the group considers it possible

⇠+k
G =

[

H✓G,|H|�k

\

i2H

⇠i



Generalised distributed knowledge: the extremes

• k = |G|: the group considers a state

• impossible iff at least one member of the group considers it impossible

• possible iff all the agents in the group considers it possible

• k = 1: the group considers a state

• impossible iff all agents in the group considers it impossible

• possible at least one agent in the group considers it possible

⇠+k
G =

[

H✓G,|H|�k

\

i2H

⇠i



Generalised distributed knowledge: the extremes

• k = |G|: the group considers a state

• impossible iff at least one member of the group considers it impossible

• possible iff all the agents in the group considers it possible

• k = 1: the group considers a state

• impossible iff all agents in the group considers it impossible

• possible at least one agent in the group considers it possible

⇠+k
G =

[

H✓G,|H|�k

\

i2H

⇠i

standard distributed knowledge

⇠+|G|
G =⇠D

G



Generalised distributed knowledge: the extremes

• k = |G|: the group considers a state

• impossible iff at least one member of the group considers it impossible

• possible iff all the agents in the group considers it possible

• k = 1: the group considers a state

• impossible iff all agents in the group considers it impossible

• possible at least one agent in the group considers it possible

⇠+k
G =

[

H✓G,|H|�k

\

i2H

⇠i

standard distributed knowledge

⇠+|G|
G =⇠D

G

general knowledge (everybody knows)

⇠+1
G =⇠E

G



Generalised distributed knowledge: conclusions

• Between distributed and general knowledge

• Intuitively two entirely different concepts

• But we show that the difference between them can be explained 
quantitatively rather than qualitatively

• Specific instances of the same concept, corresponding to which voting 
threshold is used

• There is a scale of intermediate concepts between them



Resolving distributed knowledge



Distributed knowledge again

• Common interpretations of distributed knowledge:

• Knowledge the group could obtain if they had unlimited means of 
communication

• “A group has distributed knowledge of a fact phi if the knowledge of 
phi is distributed among its members, so that by pooling their 
knowledge together the members of the group can deduce phi ...”

• Clearly problematic, consider e.g.,
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Resolving distributed knowledge (Ågotnes and 
Wang, 2014)

• Logics with distributed knowledge do not reason about what happens when 
the group actually share their information

• In this work we introduce a new modality, saying that a formula is true after 
the group have shared their information - after their distributed knowledge 
has been resolved 
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Resolving distributed knowledge (Ågotnes and 
Wang, 2014)

• Logics with distributed knowledge do not reason about what happens when 
the group actually share their information

• In this work we introduce a new modality, saying that a formula is true after 
the group have shared their information - after their distributed knowledge 
has been resolved 

“Communication 
core” (van Benthem, 2011)
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M, t |= D1,2(p ^ ¬K1p)

M, t |= R1,2(p ^K1p)



What do other agents know about the fact that a 
group G resolve their knowledge?

• Will focus here on one (of several) possibilities:

• It is common knowledge that G resolve their knowledge

• Semantics: global model update.



Resolving distributed knowledge

M = (S,⇠1, . . . ,⇠n, V ) (S5 model)

For a group of agents G, the (global) G-resolved update of

M is the model M |G where M |G = (S0,⇠0
1, . . . ,⇠0

n, V
0
) and

• S0
= S

• ⇠0
i=

⇢ T
j2G ⇠j i 2 G

⇠i otherwise

• V 0
= V
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Axioms (S5)

The following are valid:

RGp $ p

RG(� ^  ) $ RG� ^RG 

RG¬� $ ¬RG�

RGKi� $ DGRG�, when i 2 G

RGKi� $ KiRG�, when i 62 G

RGDH� $ DG[HRG�, when G \H 6= ;

RGDH� $ DHRG�, when G \H = ;

But no similar reduction axiom for RGRH� (in particular,

not equivalent to RG[H�)



Reduction axioms

Proposition: every formula is equivalent to one without

resolution operators. The logic is axiomatised by adding

the reduction axioms to an axiomatisation of S5 with dis-

tributed knowledge.
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Adding common knowledge

� ::= p | ¬� | � ^ � | Ki� | DG� | CG� | RG�

What about reduction axioms?

For any G \H = ;, the following is valid:

RGCH� $ CHRG�

For any H ✓ G and i 2 G, the following is valid:

RGCH� $ RGKi� $ DGRG�



Common knowledge

In general M, s |= RGCH� i↵ M |G, t |= � for any

(s, t) 2⇠⇤0

H , where

⇠⇤0

H= (

\

i2G

⇠i [
[

i2H\G

⇠i)
⇤

– which does not seem to be expressible without the reso-

lution operators



Sound and complete axiomatisation for the case 
with common and distributed knowledge

� ::= p | ¬� | � ^ � | Ki� | DG� | CG� | RG�



Resolution: some open questions

• Expressive power: 

• compare to PACD

• compare to languages with relativised common knowledge



Public Announcement Logics with Distributed 
Knowledge



Public Announcement Logic (Plaza, 1989)

The model resulting from removing states where �1 is false

M = (S,�1, . . . ,�n, V ) �i equivalence rel. over S

Formally:

� ::= p | Ki� | ¬� | �1 ⇥ �2 | ⇤�1⌅�2

M, s |= Ki� ⇥ ⇤t �i s M, t |= �
M, s |= ⌅�1⇧�2 ⇥ M, s |= �1 and M |�1, s |= �2

�1 is true, and �2 is true after �1 is announced
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•¬pB ,pA
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Ann •pB ,pA
s

M, s |= �KApA⇥KBpA

KBpB
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u
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Public Announcement Logic with Distributed 
Knowledge (Wang and Ågotnes, 2013)

• Have not been studied until recently (Wang and Ågotnes, 2013)

• In this work we provide, for different variants of PAL extended with (common 
and) distributed knowledge

• Complete axiomatisations 

• No surprises: just add standard axioms

• Characterisations of expressive power

• PAD is not more expressive than EL+D

• PACD is more expressive than both PAC and PAD

• Characterisations of computational complexity

• PACD: EXPTIME-complete

[�]DA $ (�! DA[�] )



Public Announcement Logic with Distributed 
Knowledge: completeness proof

• Complications: must deal with, at the same time,

• S5 knowledge

• Distributed knowledge (intersection) not modally definable

• Common knowledge (not canonical)

• Public announcements

• Develop techniques that might be useful for other purposes (such as 
resolution operators!)



Group Announcement Logic



Group Announcement Logic (Ågotnes et al., 2010)

Group Announcement Logic extends public announcement logic with:

�G⇥� : ”Group G can make an announcement
after which � is true”



Quantification: announcements by an agent
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Quantification: announcements by a group

Group Announcement Logic (GAL):

⇥ ::= p | Ki⇥ | ¬⇥ | ⇥1 ⇥ ⇥2 | ⇤⇥1⌅⇥2 | ⇤G⌅�

M, s |= ⌃G⌥� � ⇤{⇥i : i ⇥ G} M, s |= ⌃
�

i�G Ki⇥⌥�



Example: The Russian Cards Problem
From a pack of seven known cards 0,1,2,3,4,5,6 Anne and Bill 
each draw three cards and Cath gets the remaining card. How can 
Anne and Bill openly inform each other about their cards, without 
Cath learning who holds any of their cards?
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Example: The Russian Cards Problem
From a pack of seven known cards 0,1,2,3,4,5,6 Anne and Bill 
each draw three cards and Cath gets the remaining card. How can 
Anne and Bill openly inform each other about their cards, without 
Cath learning who holds any of their cards?

012a : ”Ann has cards 0,1 and 2”Formalisation:
(one)

�
ijk(ijkb � Kaijkb) (two)

�
ijk(ijka � Kbijka)

(three)
�6

q=0((qa � ¬Kcqa) ⇤ (qb � ¬Kcqb))

Known 
solution:

anne � 012a ⇥ 034a ⇥ 056a ⇥ 135a ⇥ 246a
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Example: The Russian Cards Problem
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Known 
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anne � 012a ⇥ 034a ⇥ 056a ⇥ 135a ⇥ 246a

bill � 345b ⇥ 125b ⇥ 024b

GAL: ⇥a⇤⇥b⇤(one � two � three)
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Knowledge and Ability: general actions

• Consider the general case that agents have arbitrary joint actions (and not 
only group announcements) available, that will take the system to a new state

• Two variants of ability under incomplete information:

• Knowing de dicto that you can achive something: in all the states you 
consider possible, you can achive the goal (by performing some action) 

• Knowing de re that you can achieve something: there is some action which 
will achieve the goal in all the states you consider possible



Knowledge and Ability: general actions

• Example: agent in front of a combination-lock safe; does not know the 
combination; correct combination is 123

123 124122

open closed
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Knowledge and Ability: general actions

• Example: agent in front of a combination-lock safe; does not know the 
combination; correct combination is 123

123 124122

open closed

aa

123

124124

123

�a⇥open

Ka�a⇥open

But a does not 
know de re that 

she can open the 
safe



Expressing knowledge de dicto/de re

Ability Knowledge of 
ability, de dicto

Knowledge of 
ability, de re
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Expressing knowledge de dicto/de re

Ability Knowledge of 
ability, de dicto

Knowledge of 
ability, de re

�⇥ s |= ⇥Ka⇥⇤� ⇥s �a t ⇤⇥ t |= ⌅Ka⇥⇧� ⇤⇥ ⇥s �a t t |= ⌅Ka⇥⇧�

s |= �a⇥� s |= Ka�a⇥� ??

�⇥ s |= ⇥Ka⇥⇤Ka�

s |= �a⇥Ka�Depends on
(1) the fact that 

actions are 
announcements

(2) the S5 properties



Group Announcement Logic: some key results

• Complete Hilbert-style axiomatisation (Ågotnes et al., 2010)

• Model checking: PSPACE-complete (Ågotnes et al., 2010)

• Satisfiability/validity: undecidable (co-RE)  (Ågotnes, van Ditmarsch and 
French, 2014)



Sound and Complete Axiomatisation

S5n axioms and rules
PAL axioms and rules
[G]�� [

�
i�G Ki⇥i]� where ⇥i ⇥ Lel

From �, infer [G]�

From ⇥� [�][
�

i�G Kipi]⇤, infer ⇥� [�][G]⇤
where pi ⇤⇥ �⇥ ⌅�� ⌅�⇤



Undecidability of GAL: overview

Main steps:

1. enforcing the structure of a satisfying model to have

a grid-like structure;

2. defining a formula to represent common knowledge;

3. using propositional atoms to represent tiles, express

the formula “it is common knowledge that adjacent

tiles on the grid have matching sides”.
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Undecidability of GAL: overview

Main steps:

1. enforcing the structure of a satisfying model to have

a grid-like structure;

2. defining a formula to represent common knowledge;

3. using propositional atoms to represent tiles, express
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Undecidability of GAL: grid-like structures
Given: a set of tiles �

• 5 agents: East (e), West (w),

North (n), South (s), and one

agent that simulates the common

knowledge of the other agents (t).

• Atomic propositions:

– ~, |, }and �
– p� , for each � 2 �



GAL: open problems

• (Un)ecidability for less than five agents

• Decidable fragments

• Expressive power compared to Arbitrary Public Announcement Logic (APAL):

• It is known that GAL is not as expressive as APAL

• Unknown: can APAL express everything GAL can express (in the multi-
agent case)?



Other things: what will they do?

• Which group announcements will rational agents actually make?

• Public announcement games

• Strategic form (Ågotnes and van Ditmarsch, 2011)

• Question-answer games (Ågotnes, van Benthem, van Ditmarsch and 
Minica, 2011)

• Coalitional (Ågotnes and van Ditmarsch, 2012)



Scientia Potentia Est: on the Power of Knowledge
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Consider this scenario:

Who knows more?

Who has the 
most important 

information?Who has 
the most important information about 

the whereabouts of Robin?

Who 
has the most important information about the 

whereabouts of Robin if communication is 
possible?

Will knows more about q, in 
the sense he can find out q 

both by talking to Marian and 
by talking to Tuck

M : knows that p� q T : knows that r � q W : knows that p � r

p: Robin received the letter
r: the sheri� is at home
q: Robin is by the great oak



Scientia Potentia Est (Ågotnes, van der Hoek, 
Wooldridge, 2011)

• Study settings where: information about some objective (“Robin is at the 
great oak”) is distributed among a group of agents, but is typically now known 
by any individual agent

• We combine:

• epistemic logic,

• voting games and power indices

• to measure how important an agent‘s information is in an arbitrary 
subgroup of all agents wrt. the objective

• Information-based power



Coalitional games

A coalitional game � = ⇧Ag, �⌃:

• Ag = {1, . . . , n}: set of players

• � : 2Ag ⇥ R is the characteristic function
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Coalitional games

� is simple: �(C) � {0, 1} for all C

A coalitional game � = ⇧Ag, �⌃:

• Ag = {1, . . . , n}: set of players

• � : 2Ag ⇥ R is the characteristic function

�(C) = 1: C is winning
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0 otherwise.
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Power indices

swing(G, i) =
�

1 if �(G) = 0 and �(G � {i}) = 1
0 otherwise.

Banzhaf score for agent i:

�i =
�

G�Ag\{i}

swing(G, i)

Banzhaf index for agent i:

�i =
⇥i�

j�Ag ⇥j
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Power in epistemic models
Given S = ⇥M, s,�⇤:

• M, s: pointed epistemic model

• �: goal formula

�D
S (G) =

�
1 M, s |= DG⇥
0 otherwise.

power indices



Summing up

• Generalised distributed knowledge

• Resolving distributed knowledge

• Public announcement logic with distributed knowledge

• Group announcement logic

• Scientia Potentia Est
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