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I. Prologue
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Operator algebras 101A, part 1

In this talk, H will usually denote a complex (separable, infinite
dimensional) Hilbert space, e.g., H = `2. We use ‖ · ‖ to denote
the norm.

Recall that a linear operator T : H → H is bounded if

‖T‖ = sup{‖Tv‖ : ‖v‖ ≤ 1} <∞,

and that T is bounded precisely when it is continuous with respect
to the norm on H. The quantity ‖T‖ is called the operator norm
of T .

The set of bounded (linear) operators on H is denoted B(H).
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Operator algebras 101A, part 2

B(H) is a Banach space (complete normed vector space over C)
with the operator norm. Moreover, composition of operators make
B(H) into a Banach algebra.

But B(H) is a special kind of Banach algebra. The “adjoint” of an
operator T , which is the unique operator T ∗ satisfying

〈Tv ,w〉 = 〈v ,T ∗w〉,

is an involution on B(H), which is linear, but anti-multiplicative:
(TS)∗ = S∗T ∗.
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Operator algebras 101A, part 3

This involution (the adjoint operation) satisfies the norm identity

‖TT ∗‖ = ‖T‖2,

which is called the C ∗-identity.

This identity, it turns out, sets B(H) rather apart from other
“involutive Banach algebras”:

Definition

I A C ∗-algebra is a norm-closed ∗-subalgebra of B(H), for
some H;

I Equivalently, a C ∗-algebra is a Banach algebra with an
involution satisfying the C ∗-identity.
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Operator algebras 101A, part 4

The study of subalgebras of B(H), which (broadly speaking) is
what the field operator algebras is all about, grew out of the study
of individual operators T ∈ B(H).

It turns out that it is often fruitful to look not just at T ∈ B(H),
but at C ∗(T ), the C ∗-algebra generated by T .

In fact, C ∗(T ) is often “too small”, containing too few of the
operators needed for understanding the structure of T . What we
need is a weaker topology than the norm topology.
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Operator algebras 101A, part 5

Examples:

I If X is a compact Hausdorff space, then C (X ), the complex
valued continuous functions on X , forms a C∗-algebra with
the sup-norm and pointwise composition. These are
prototypical Abelian C∗-algebras.

I Matrix algebras, Mn(C).
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Operator algebras 101A, part 6

Definition
The weak topology on B(H) is the weakest topology making the
maps

T 7→ 〈Tv ,w〉

continuous for all v ,w ∈ H.

This, it turns out, is just one of many useful topologies that are
weaker than the norm topology. But for this talk, it is all we need.

Definition
A von Neumann algebra is a weakly closed ∗-subalgebra of
B(H), which includes the identity operator I .
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Operator algebras 101A, part 6

For an operator T ∈ B(H), we let W ∗(T ) ⊆ B(H) denote the von
Neumann algebra generated by T .

Clearly C ∗(T ) ⊆W ∗(T ); In most interesting cases, the inclusion is
strict.
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Operator algebras 101A, part 7

Shortly after C∗- and von Neumann algebras were introduced (by
Gelfand, Murray and von Neumann), interest arose in creating a
structure theory for these algebras. An important definition is the
following:

Definition
A von Neumann algebra A ⊆ B(H) is a factor if the centre of A,
i.e.

Z (A) = {T ∈ A : (∀S ∈ A)ST = TS},

consists of scalar multiples of the identity of operator, i.e.,

Z (A) = CI .
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Operator algebras 101A, part 8

Theorem (Murray-von Neumann, late 1930s)

Every von Neumann algebra can be written uniquely as a direct
sum or “direct integral” of factors.

The moral of this seems to be that:

I Factors are the building blocks of von Neumann algebras.

I Whence our focus should be on understanding factors.
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Operator algebras 101A, part 9

For better or for worse, this lead to people to try to classify (up to
∗-isomorphism) von Neumann factors.

In the beginning, this might have looked easy because there were
only a handful of examples of non-isomorphic factors known. All
the same, Murray and von Neumann made rough classification of
factors into what they called types.

Initially, there were type I , II and III , but then over time people
refined this to have type In, n ∈ {1, 2, 3, . . . ,∞}, type II1 and type
II∞, and finally, type IIIλ, λ ∈ [0, 1].

But then, over time, more and more infinite families of strange and
wonderful factors were found leaving one to wonder: Is it at all
possible to classify factors up to isomorphism?
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II.
Classification problems

from the point of view of
Descriptive set theory
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Descriptive set theory 101A

Recall that descriptive set theory is (roughly speaking) the study of
definable sets and functions in and on Polish spaces.

Recall:

I A Polish space is a completely metrizable separable
topological space.

I A standard Borel space is a Borel space where the σ-algebra is
generated by the open sets of some Polish topology on the
space.

I A function f : X → Y between Polish (or standard Borel)
spaces X and Y is Borel if

f −1(A)

is Borel for all Borel A ⊆ Y . Equivalently: The graph of f is
Borel in X × Y .
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Descriptive set theory 101B

Examples of Polish spaces (whence standard Borel spaces) abound
in mathematics:

I The real numbers R;

I the Baire space NN;

I the Cantor space 2N = {0, 1}N;

I the space of continuous functions on the interval C ([0, 1]);

I the (real or complex) Hilbert space `2;

I separable Banach spaces;

I etc., etc., etc.

Asger Törnquist A descriptive set-theoretic view of classification problems in operator algebras - an overview of recent developments



Descriptive set theory 101B

Examples of Polish spaces (whence standard Borel spaces) abound
in mathematics:

I The real numbers R;

I the Baire space NN;

I the Cantor space 2N = {0, 1}N;

I the space of continuous functions on the interval C ([0, 1]);

I the (real or complex) Hilbert space `2;

I separable Banach spaces;

I etc., etc., etc.

Asger Törnquist A descriptive set-theoretic view of classification problems in operator algebras - an overview of recent developments



Descriptive set theory 101B

Examples of Polish spaces (whence standard Borel spaces) abound
in mathematics:

I The real numbers R;

I the Baire space NN;

I the Cantor space 2N = {0, 1}N;

I the space of continuous functions on the interval C ([0, 1]);

I the (real or complex) Hilbert space `2;

I separable Banach spaces;

I etc., etc., etc.

Asger Törnquist A descriptive set-theoretic view of classification problems in operator algebras - an overview of recent developments



Descriptive set theory 101B

Examples of Polish spaces (whence standard Borel spaces) abound
in mathematics:

I The real numbers R;

I the Baire space NN;

I the Cantor space 2N = {0, 1}N;

I the space of continuous functions on the interval C ([0, 1]);

I the (real or complex) Hilbert space `2;

I separable Banach spaces;

I etc., etc., etc.

Asger Törnquist A descriptive set-theoretic view of classification problems in operator algebras - an overview of recent developments



Descriptive set theory 101B

Examples of Polish spaces (whence standard Borel spaces) abound
in mathematics:

I The real numbers R;

I the Baire space NN;

I the Cantor space 2N = {0, 1}N;

I the space of continuous functions on the interval C ([0, 1]);

I the (real or complex) Hilbert space `2;

I separable Banach spaces;

I etc., etc., etc.

Asger Törnquist A descriptive set-theoretic view of classification problems in operator algebras - an overview of recent developments



Descriptive set theory 101B

Examples of Polish spaces (whence standard Borel spaces) abound
in mathematics:

I The real numbers R;

I the Baire space NN;

I the Cantor space 2N = {0, 1}N;

I the space of continuous functions on the interval C ([0, 1]);

I the (real or complex) Hilbert space `2;

I separable Banach spaces;

I etc., etc., etc.

Asger Törnquist A descriptive set-theoretic view of classification problems in operator algebras - an overview of recent developments



Descriptive set theory 101B

Examples of Polish spaces (whence standard Borel spaces) abound
in mathematics:

I The real numbers R;

I the Baire space NN;

I the Cantor space 2N = {0, 1}N;

I the space of continuous functions on the interval C ([0, 1]);

I the (real or complex) Hilbert space `2;

I separable Banach spaces;

I etc., etc., etc.

Asger Törnquist A descriptive set-theoretic view of classification problems in operator algebras - an overview of recent developments



Descriptive set theory 101B

Examples of Polish spaces (whence standard Borel spaces) abound
in mathematics:

I The real numbers R;

I the Baire space NN;

I the Cantor space 2N = {0, 1}N;

I the space of continuous functions on the interval C ([0, 1]);

I the (real or complex) Hilbert space `2;

I separable Banach spaces;

I etc., etc., etc.

Asger Törnquist A descriptive set-theoretic view of classification problems in operator algebras - an overview of recent developments



Bounded operators as a standard Borel space

The set B(H) of bounded linear operators on a separable, complex
infinite-dimensional Hilbert space H is not a Polish space in the
norm topology (it is not separable), but:

I Recall that the weak topology is the weakest topology
making the maps

T 7→ 〈Tv ,w〉

continuous for all v ,w ∈ H.

I The weak operator topology is not Polish, but the Borel
structure generated by this topology is standard Borel after
all.

I We give B(H) the Borel structure generated by the weakly
open sets.
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all.

I We give B(H) the Borel structure generated by the weakly
open sets.
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Borel reducibility

Descriptive set theory can provide a framework for studying
classification problems from a global point of view.

The central concept is called Borel reducibility:

Definition
Let

I X and Y be standard Borel spaces;

I E an equivalence relation on X ;

I F an equivalence relation on Y .

A Borel reduction of E to F is a Borel function θ : X → Y such
that

(∀x , x ′ ∈ X )xEx ′ ⇐⇒ θ(x)Fθ(x ′).

If there is a Borel reduction of E to F , then we say E is Borel
reducible to F , written E ≤B F .
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Borel reducibility and classification

The idea is this:

I We think of the points of X and Y as being interesting
objects, or at least “codes” for interesting objects.

I E and F are typically some kind of “isomorphism relation”
among the objects in X and Y , respectively.

I A Borel reduction θ : X → Y of E to F gives a classification
of the points of X up to E -equivalence by a Borel assignment
of F -classes.
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Why Borel reducibility

The requirement that θ be Borel in the definition reflects that to
have a “true classification”, the assignment of invariants must be
somehow “computable” or “calculable”.

I The class of Borel functions plays the role of a suitably (very)
general class of “calculable” functions.

I If we don’t make any assumptions on the definability of the
reduction θ, then reducibility would just amount to comparing
the cardinality of the quotient spaces X/E and Y /F .

Asger Törnquist A descriptive set-theoretic view of classification problems in operator algebras - an overview of recent developments



Why Borel reducibility

The requirement that θ be Borel in the definition reflects that to
have a “true classification”, the assignment of invariants must be
somehow “computable” or “calculable”.

I The class of Borel functions plays the role of a suitably (very)
general class of “calculable” functions.

I If we don’t make any assumptions on the definability of the
reduction θ, then reducibility would just amount to comparing
the cardinality of the quotient spaces X/E and Y /F .

Asger Törnquist A descriptive set-theoretic view of classification problems in operator algebras - an overview of recent developments



Why Borel reducibility

The requirement that θ be Borel in the definition reflects that to
have a “true classification”, the assignment of invariants must be
somehow “computable” or “calculable”.

I The class of Borel functions plays the role of a suitably (very)
general class of “calculable” functions.

I If we don’t make any assumptions on the definability of the
reduction θ, then reducibility would just amount to comparing
the cardinality of the quotient spaces X/E and Y /F .

Asger Törnquist A descriptive set-theoretic view of classification problems in operator algebras - an overview of recent developments



Main examples from operator algebras, I

Let again H be a separable complex Hilbert space.

If we want to study classification problems in operator algebras,
then B(H) provides the natural basic space to consider.

I We equip Γ
def
= B(H)N with the product Borel structure, which

is also standard.
I Given a sequence γ ∈ Γ, we let:

I C∗(γ) denote the C∗-algebra generated by γ. That is, C∗(γ)
is the smallest operator norm closed ∗-subalgebra of B(H)
containing {γi : i ∈ N}.

I We define in Γ the equivalence relation

γ 'C∗
δ ⇐⇒ C∗(γ) is isomorphic to C∗(δ).
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Main examples from operator algebras, II

In a similar fashion we define, also in Γ = B(H)N:

I W ∗(γ) denote the von Neumann algebra generated by γ.
That is, W ∗(γ) is the smallest weakly closed unital
∗-subalgebra of B(H) containing {γi : i ∈ N}.

I We define in Γ the equivalence relation

γ 'W ∗
δ ⇐⇒ W ∗(γ) is isomorphic to W ∗(δ).

Remark: There is another (equivalent) parametrization as a
standard Borel space for the separably acting von Neumann
algebras, namely the Effros Borel space. We will return to this if
time allows at the end of the talk.
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Main examples from operator algebras, III

This places the isomorphism relation for separable C ∗-algebras and
separably acting von Neumann algebras within the context of
descriptive set theory.

Basic fact: The equivalence relations 'C∗
and 'W ∗

are analytic
as subsets of Γ× Γ. (I.e., there are Borel functions from NN onto
them.)

N.b.! This fact doesn’t rule out that 'C∗
and 'W ∗

could be
Borel. It will follow from later results in this talk that they are in
fact not Borel, but are complete analytic.
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Other example: The space of countable groups

A different breed of examples comes from countable structures.

I A countable group can be thought of as a triple
(f , g , e) ∈ NN×N × NN × N such that

I n ·f m = f (n,m) defines a group operation on N;
I The inverse of n in this group is given by g(n)
I e is the identity element.

I Then the set GP =

{(f , g , e) ∈ NN×N×NN×N : (f , g , e) defines a group as above}

is easily seen to be closed in the product topology (taking N
discrete.)

I GP may reasonably be thought of as the Polish space of
countably infinite groups.
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An action of the infinite symmetric group

The isomorphism relation in GP is induced by an action of the
infinite symmetric group

S∞ = {δ : N→ N : δ is a bijection}.

For δ ∈ S∞, and (f , g , e) we define

δ · f (n,m) = f (δ−1(n), δ−1(m)),

and
δ · g(n) = g(δ−1(n)).

Then the action

δ · (f , g , e) = (δ · f , δ · g , δ−1(e))

is easily seen to induce the isomorphism relation in GP.
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The Logic Action

The action of S∞ on GP is, of course, just a special case of the
so-called logic action in model theory.

However, the important thing for us is that isomorphism of
countable models of a countable language is induced by a natural
(and continuous) action of S∞.

Definition
We will say that an action of a Polish group G on a standard Borel
space Y is Borel if the map G × Y → Y : (δ, y) = δ · y is Borel.
We will call Y a Borel G -space.

Note: The “logic actions” are continuous actions of S∞, so they
are Borel.
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We will call Y a Borel G -space.

Note: The “logic actions” are continuous actions of S∞, so they
are Borel.
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Orbit equivalence relations

Each Borel action a : G × Y → Y of a Polish group G on a Polish
space Y gives rise to an orbit equivalence relation E a, defined by

yE ay ′ ⇐⇒ (∃g ∈ G )g · y = y ′.

Note: The logic action of S∞ above is Borel, and so the
isomorphism relation in GP is an orbit equivalence relations
induced by S∞.
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Classification by countable structures

Definition

Let F be an equivalence relation on a standard Borel space X . We
will say that F is classifiable by countable structures if there is a
Borel S∞-space Y , with a Borel action a : S∞ ×Y → Y , such that

F ≤B E a.

Remark: This definition is motivated by the fact that all S∞
actions can be described in terms of appropriate “logic actions”,
for an appropriate choice of structures on N.
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An historical remark, I

The study of the global structure of classification problems
essentially goes back to Mackey and his work on unitary
representations of groups and C ∗-algebras, which was further
developed by Glimm and Effros in the 1960’s.

The key notion in this work is the smooth/non-smooth dichotomy,
which in our terminology is the following:

Definition
An equivalence relation E on a standard Borel space is called
smooth if there is a Borel reduction of E to =R, the equality
relation in R.
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An historical remark, II

The standard example of an equivalence relation which is not
smooth is eventual equality on 2N = {0, 1}N:

xE0y ⇐⇒ (∃N)(∀n ≥ N)xn = yn.

Though E0 is not smooth, it is hardly a horrible equivalence
relation. In fact, being able to classify something by using E0

classes as invariants would in most fields of mathematics probably
be seen as a victory!
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An historical remark, III

Borel reducibility is a theory that allows us to go far beyond the
smooth/non-smooth dichotomy, and prove that naturally occurring
equivalence relations are far, far worse than E0.

In fact, in most interesting cases, classification problems turn out
to be far worse than E0. For instance, already isomorphism of
countable graphs or groups is far worse than E0.

Comparing classification problems to isomorphism relations of
countable structures is a step in the direction of proving that
certain classification problems are not just bad, they are worse.
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A summary of what has happened so far

I Standard Borel spaces may be used to parametrize all
separable C ∗ and von Neumann algebras acting on a separable
complex Hilbert space H.

I There are also standard Borel spaces of “countable
structures”, such as groups, graphs, but also countable linear
orders, hypergraphs, fields, etc.

I The isomorphism relation in these parametrizations become
analytic equivalence relations.

I Borel reducibility gives us a way of comparing equivalence
relations on standard Borel spaces, to “measure their relative
complexity”.

Asger Törnquist A descriptive set-theoretic view of classification problems in operator algebras - an overview of recent developments



A summary of what has happened so far

I Standard Borel spaces may be used to parametrize all
separable C ∗ and von Neumann algebras acting on a separable
complex Hilbert space H.

I There are also standard Borel spaces of “countable
structures”, such as groups, graphs, but also countable linear
orders, hypergraphs, fields, etc.

I The isomorphism relation in these parametrizations become
analytic equivalence relations.

I Borel reducibility gives us a way of comparing equivalence
relations on standard Borel spaces, to “measure their relative
complexity”.

Asger Törnquist A descriptive set-theoretic view of classification problems in operator algebras - an overview of recent developments



A summary of what has happened so far

I Standard Borel spaces may be used to parametrize all
separable C ∗ and von Neumann algebras acting on a separable
complex Hilbert space H.

I There are also standard Borel spaces of “countable
structures”, such as groups, graphs, but also countable linear
orders, hypergraphs, fields, etc.

I The isomorphism relation in these parametrizations become
analytic equivalence relations.

I Borel reducibility gives us a way of comparing equivalence
relations on standard Borel spaces, to “measure their relative
complexity”.

Asger Törnquist A descriptive set-theoretic view of classification problems in operator algebras - an overview of recent developments



A summary of what has happened so far

I Standard Borel spaces may be used to parametrize all
separable C ∗ and von Neumann algebras acting on a separable
complex Hilbert space H.

I There are also standard Borel spaces of “countable
structures”, such as groups, graphs, but also countable linear
orders, hypergraphs, fields, etc.

I The isomorphism relation in these parametrizations become
analytic equivalence relations.

I Borel reducibility gives us a way of comparing equivalence
relations on standard Borel spaces, to “measure their relative
complexity”.

Asger Törnquist A descriptive set-theoretic view of classification problems in operator algebras - an overview of recent developments



A summary of what has happened so far

I Standard Borel spaces may be used to parametrize all
separable C ∗ and von Neumann algebras acting on a separable
complex Hilbert space H.

I There are also standard Borel spaces of “countable
structures”, such as groups, graphs, but also countable linear
orders, hypergraphs, fields, etc.

I The isomorphism relation in these parametrizations become
analytic equivalence relations.

I Borel reducibility gives us a way of comparing equivalence
relations on standard Borel spaces, to “measure their relative
complexity”.

Asger Törnquist A descriptive set-theoretic view of classification problems in operator algebras - an overview of recent developments



Questions going forward

I Can von Neumann algebras be completely classified by
assigning countable groups, graphs or other countable
structures as invariants?

I What about C ∗-algebras?

I If the answer is no, can we make further determinations of
“how bad” classification problems are?
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III. Applications to classification
problems in operator algebras

Asger Törnquist A descriptive set-theoretic view of classification problems in operator algebras - an overview of recent developments



Von Neumann algebras

As we saw, the primary interest in von Neumann algebras is to
classify the so-called factors, which are the building blocks of von
Neumann algebras.

Attempts at classifying factors suffered a stab to the heart a few
years ago:

Theorem (Sasyk-T., 2008)

The isomorphism relation for separably acting factors is not
classifiable by countable structures. In fact:

I II1 factors are not classifiable by countable structures.

I II∞ factors are not classifiable by countable structures.

I For each λ ∈ [0, 1], the factors of type IIIλ are not classifiable
by countable structures.
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Von Neumann algebras

The only previous theorem to give this kind of “global”
information about the complexity of classifying factors was this:

Theorem (Woods, 1973)

The isomorphism relation for ITPFI (Infinite Tensor Products of
Factors of type I) factors is not smooth.

But, in the words of the late, great Greg Hjorth: “When it is bad,
it is worse”.

Theorem (Sasyk-T., 2009)

ITPFI factors cannot be classified by countable structures.
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Von Neumann algebras

Theoretically, it may just be that the classification of factors is just
a problem incomparable with classifying countable structures.
Unfortunately, this is not the case:

Theorem (Sasyk-T., 2008)

The isomorphism problem for countable graphs (whence any other
kind of countable structure) is Borel reducible to the isomorphism
relation for separably acting type II1 and II∞ factors.

In fact, this is true already of group von Neumann algebras of
countable discrete icc groups.

Note: Our proof does not seem to give this for type IIIλ, but it
can be derived for type III0 by using a recent result of Foreman and
Weiss. For type IIIλ, λ > 0 it seems to be open.
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Von Neumann algebras

So the classification of factors is indeed worse than bad. How bad
could it be?

Theorem (Ferenczi-Louveau-Rosendal, 2008 (?))

The classification of separable Banach spaces up to linear
isomorphism is ≤B maximal among analytic equivalence relations.

(Ouch!)
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Von Neumann algebras

Theorem (Sasyk-T., 2008)

The isomorphism relation for separably acting factors (and
separably acting von Neumann algebras in general) is Borel
reducible to an orbit equivalence relation induced by the unitary
group, whence is not maximal among analytic equivalence
relations.

Conjecture (Törnquist): The isomorphism relation for separably
acting type II1 factors is ≤B universal among orbit equivalence
relation induced by the unitary group.
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C∗-algebras

So much for von Neumann algebras. What about their C ∗-algebra
brethren?

In C ∗-algebra theory, there is a huge classification program
underway since the 1970s for the amenable (i.e., nuclear), simple,
separable C ∗-algebras. It has many successes, but over time it has
become clear that the invariants needed seem to grow ever more
complex.

A possible reason is that very complicated invariants are necessary!
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C∗-algebras

Theorem (Farah-Toms-T., 2011)

I The isomorphism relation for amenable, simple, separable,
unital C ∗-algebras is not classifiable by countable structures

I The isomorphism relation for countable graphs (and all other
types of countable structures) is Borel reducible to
isomorphism of amenable, simple, separable, unital
C ∗-algebras.

I In fact, the homeomorphism relation for compact metric
spaces is Borel reducible to it.
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C∗-algebras

What about an upper bound? For the nuclear simple separable
unital algebras, an upper bound was provided by an action of the
automorphism group of O2, but the argument was extremely
complicated.

Giving and upper bound on isomorphism for all separable
C ∗-algebras quickly became a notorious open problem, though it
was recently solved:

Theorem (Elliott-Farah-Paulson-Rosendal-Toms-T., 2013.)

The isomorphism for separable C ∗-algebras is Borel reducible to an
orbit equivalence relation induced by a Polish group.
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C∗-algebras

The group used is the isometry group of the Urysohn metric space.

The actions of this group realizes the maximal complexity of
equivalence relations induced by a Polish group action. It is
therefore natural to ask:

Question Is the isomorphism relation for separable C ∗-algebras ≤b

universal for equivalence relations induced by Polish group actions?

Very recently, this question seems to have been answered in the
affirmative by Marcin Sabok:

Theorem (Sabok, 2013)

The isomorphism problem of separable simple nuclear
C∗-algebras is universal for equivalence relations induced by Polish
group actions.
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C∗-algebras

Sabok’s argument is rather long and complicated (it takes the
route of proving that affine homeomorphism of Choquet simplexes
is universal, and then employs a theorem by Farah-Toms-T. that
says that this equivalence relation is Borel reducible to
isomorphism of nuclear, simple, separable C∗-algebras.)

Very, very recently, a simpler and possibly more fundamental
argument for maximality has been given:

Theorem (Joseph Zielinski, 2014)

Homeomorphism of compact metric spaces is a universal
equivalence relation induced by Polish group actions.
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Where to from here?

I We now know that isomorphism of separable, nuclear, simple
C∗-algebras is as complicated as could be.

I But we don’t know anything like this about isomorphism of
von Neumann algebras.

I In fact, our upper bound on the complexity of isomorphism of
von Neumann facors is an action of the unitary group.

I Main Question: Does orbit equivalence relations induced by
the unitary group reach the maximal complexity of orbit
equivalence relations?

I If the answer to this is no, the most interesting way of
answering this is to answer the following:

I Is there a “turbulence theory” for the unitary group?
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The end
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