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Team semantics

Assignment

x y z
s 1 0 2

x y z
s1 1 0 2
s2 2 1 0
...

...
...

...
sn 1 3 1

color shape height
s yellow wrinkled tall

color shape height
s1 yellow wrinkled tall
s2 green wrinkled short
s3 green round tall
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Multi-team semantics

Assignment Multi-team

x y z
s 1 0 2

x y z
s1 1 0 2
s2 2 1 0
...

...
...

...
sn 1 0 2

color shape height
s yellow wrinkled tall

color shape height
s1 yellow wrinkled tall
s2 green wrinkled short
s3 green wrinkled short
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Definition

A multi-team is a pair (X , τ), where X is a set and τ is a function such that

1 Dom(τ) = X ,

2 If i ∈ X , then τ(i) is an assignment for one and the same set of variables. This set of
variables is denoted by Dom(X ).

3 An ordinary team X can be thought of as the multi-team (X , τ), where τ(i) = i for all
i ∈ X .

4 Opens the door to probabilistic teams.
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Dependence and independence as atoms

Dependence atom =(x , y), “y depends only on x”.

Approximate dependence atom =p(x , y), “y depends only on x , apart from a p-small
number of exceptions”, 0 ≤ p ≤ 1.

Independence atom x ⊥ y , “x and y are independent of each other”.

Relativized independence atom x ⊥z y , “x and y are independent of each other, if z is
kept fixed”.

Inclusion atom x ⊆ y , “values of x occur also as values of y”.
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Dependence and Independence

Life Sciences Mendel’s Laws, Hardy-Weinberg paradox
Social Sciences Arrow’s theorem
Physical Sciences Entanglement, non-locality

Computer Science Database dependence
Mathematics Linear algebra
Statistics Random Variables

Logic Dependence of variables, logical independence
Model theory Shelah’s classification theory
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Examples

I will park the car next to the lamp post depending only on whether it is Thursday or not.

I will park the car next to the lamp post independently of whether it is past 7 P.M. or not.

Whether the objects fall to the ground simultaneously depends only on whether they are
dropped from the same height or not.

Whether the objects fall to the ground simultaneously is independent of whether they
weigh the same or not.
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Examples

I will park the car next to the lamp post depending only on the day of the week.

I will park the car next to the lamp post depending only on the day of the week, apart
from a few exceptions.

I will park the car next to the lamp post independently of the day of the week.

The time of descent of the ball depends only on the height of the drop.

The time of descent of the ball is independent of the weight of the ball.

Jouko Väänänen Dependence and Independence SLS, August 2014 14 / 78



Notation

x0, x1, x2, ... individual variables.

x , y , ... finite sequences of individual variables.

xy means concatenation.
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Armstrong’s Axioms

1. Identity rule: =(x , x).
2. Symmetry Rule: If =(xt, yr), then =(tx , yr) and =(xt, ry).
3. Weakening Rule: If =(x , yr), then =(xt, y).
4. Transitivity Rule: If =(x , y) and =(y , r), then =(x , r).
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Axioms of approximate dependence

A1. =0(xy , x) (Reflexivity)
A2. =1(x , y) (Totality)
A3. If =p(x , yv), then =p(xu, y) (Weakening)
A4. If =p(x , y), then =p(xu, yu) (Augmentation)
A5. If =p(xu, yv), then =p(ux , yv) and =p(xu, vy) (Permutation)
A6. If =p(x , y) and =q(y , v),

where p + q ≤ 1, then =p+q(x , v) (Transitivity)
A7. If =p(x , y) and p ≤ q ≤ 1, then =q(x , y) (Monotonicity)
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Geiger-Paz-Pearl axioms

1. Empty set rule: x ⊥ ∅.
2. Symmetry Rule: If x ⊥ y , then y ⊥ x .
3. Weakening Rule: If x ⊥ yr , then x ⊥ y .
4. Exchange Rule: If x ⊥ y and xy ⊥ r , then x ⊥ yr .
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Axioms of relative independence

Definition

The axioms of the relative independence atom are:

1 y ⊥x y entails y ⊥x z (Constancy Rule)

2 x ⊥x y (Reflexivity Rule)

3 z ⊥x y entails y ⊥x z (Symmetry Rule)

4 yy ′ ⊥x zz ′ entails y ⊥x z . (Weakening Rule)

5 If z ′ is a permutation of z , x ′ is a permutation of x , y ′ is a permutation of y , then
y ⊥x z entails y ′ ⊥x ′ z ′. (Permutation Rule)

6 z ⊥x y entails yx ⊥x zx (Fixed Parameter Rule)

7 x ⊥z y ∧ u ⊥zx y entails u ⊥z y . (First Transitivity Rule)

8 y ⊥z y ∧ zx ⊥y u entails x ⊥z u (Second Transitivity Rule)
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Semantics of the dependence atom

Definition

A team X satisfies the atom =(x , y) if

∀s, s ′ ∈ X (s(x) = s ′(x)→ s(y) = s ′(y)).

Example

X = scientific data about dropping iron balls in Pisa. X satisfies

=(height, time)

if in any two drops from the same height the times of descent are the same.
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Approximate dependence

Definition

Suppose p is a real number, 0 ≤ p ≤ 1. A finite team X is said to satisfy the approximate
dependence atom

=p(x , y)

if there is Y ⊆ X , |Y | ≤ p · |X |, such that the team X \ Y satisfies =(x , y). We then write

X |= =p(x , y).
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Example

Every finite team satisfies =1(x , y), because the empty team always satisfies =(x , y).

=0(x , y) is equivalent to =(x , y).

A team of size n always satisfies =1− 1
n
(x , y).
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Semantics of the independence atom

Definition

A team X satisfies the atomic formula y ⊥ z if for all s, s ′ ∈ X there exists s ′′ ∈ X such that
s ′′(y) = s(y), and s ′′(z) = s ′(z).

Example

X = scientific experiment concerning dropping iron balls of a fixed size in Pisa. X satisfies

weight ⊥ height

if for any two drops of a ball also a drop, with weight from the first and height from the
second, is performed.
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x = y =(x , y) x ⊥ y
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A Completeness Theorem

Theorem (Armstrong)

If T is a finite set of dependence atoms of the form =(u, v) for various u and v, then TFAE:

1 =(x , y) follows from T according to the above rules.

2 Every team that satisfies T also satisfies =(x , y).
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Arguing about pproximate dependence

The axioms and rules for =p(x , y) are designed with finite derivations in mind. With
infinitely many numbers p we can have infinitary logical consequences (in finite teams),
such as

{=1
n
(x , y) : n = 1, 2, . . .} |= =0(x , y),

which do not follow by the axioms and rules (A1)-(A6)1.

We therefore focus on finite derivations and finite sets of approximate dependences.

1We can use this example to encode the Halting Problem to the question whether a recursive set of
approximate dependence atoms logically implies a given approximate dependence atom.
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We have the following Completeness Theorem:

Theorem

Suppose Σ is a finite set of approximate dependence atoms. Then

1 =p(x , y) follows from Σ by the above axioms and rules

2 Every finite multi-team satisfying Σ also satisfies =p(x , y).
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A Completeness Theorem

Theorem (Geiger-Paz-Pearl)

If T is a finite set of independence atoms of the form t ⊥ r for various t and r , then TFAE:

1 x ⊥ y follows from T according to the above rules

2 Every team that satisfies T also satisfies x ⊥ y.

Consequence of relativized independence is undecidable (Herrmann 1995).
Consequence of inclusion is PSPACE-complete (Casanova-Fagin-Papadimitriou 1984).
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From database to algebra to model theory

x y z

s1 1 0 2
s2 −2 1 0
...

...
...

...
sn 1 3 1

2

Jouko Väänänen Dependence and Independence SLS, August 2014 30 / 78



Logical operations

Whatever dependence/independence atoms we have, we can coherently add logical
operations ∧,∨,∀ and ∃.

In front of the atoms can also use ¬.

Conservative extension of classical logic.

Also: intuitionistic logic, propositional logic, modal logic, etc
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Example: disjunction

Definition

A team X satisfies φ ∨ ψ if X = Y ∪ Z such that Y satisfies φ and Z satisfies ψ.

In strict semantics we require Y ∩ Z = ∅, in lax semantics (default) we do not require this.
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Logic of dependence and independence

Definition
1 Dependence logic is the extension of first order logic obtained by adding the dependence

atoms =(x , y). (V. 2007)

2 Independence logic is the extension of first order logic obtained by adding the
independence atoms x ⊥ y . (Grädel-V. 2010)

Galliani 2012: =(x , y) is definable from x ⊥ y .
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When approximate dependence atoms are added to first order logic we can express
propositions such as “the predicate P consists of half of all elements, give or take 5%” or
“the predicates P and Q have the same number of elements, with a 1 % margin of error”.
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The fundamental characterizations

Theorem

Dependence logic = existential second order with a negative predicate for the team.
(Kontinen-V. 2009)

Independence logic = existential second order with a predicate for the team. (Galliani
2012)

Finite models: Non-deterministic polynomial time.
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Propositional case

Theorem (Fan Yang 2014)

Propositional dependence logic can express all non-void properties of teams that are
downward closed.

Propositional dependence logic is equivalent to inquisitive logic of Ciardelli, Groenendijk
and Roelofsen.
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New phenomenon: Non-uniform definability

A connective may be uniformly definable, such as

C (φ, ψ, θ) ⇐⇒ (φ ∧ ψ) ∨ (φ ∧ θ).

Or just definable, such as

X |= φ ∨B ψ ⇐⇒ X |= φ or X |= ψ.

Namely, every instance of ∨B is individually definable, but ∨B is not uniformly definable.
(F. Yang 2014)

Truth functional completeness has a new dimension: Every downward closed set of teams
is definable but some natural operations on such sets are not definable.
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Inclusion atom

x ⊆ y “values of x are also values of y”

A directed graph contains a cycle (or an infinite path) iff it satisfies ∃x∃y(y ⊆ x ∧ xEy)

Theorem (Galliani-Hella 2013)

Inclusion logic = Fixpoint logic on finite models
Inclusion logic = PTIME on finite ordered models.

Theorem (Hannula-Kontinen 2014)

Inclusion logic with strict semantics = NP on finite models.
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Examples

Example

∀x∀y∃z(=(z , y) ∧ ¬z = x) characterizes infinity.

Alternatively: ∀z∀x∃y∀u∃v(xy ⊥ uv ∧ (x = u ↔ y = v) ∧ ¬v = z).

∃x∃y(y ⊆ x ∧ y < x) characterizes non-well-foundedness.
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Cannot axiomatize logical consequence.

Can axiomatize first order consequences.
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The rules

Definition

Natural deduction of classical logic, but Disjunction Elimination Rule and Negation
Introduction Rule only for first order formulas.

Weak Disjunction Rule: From ψ ` θ conclude φ ∨ ψ ` φ ∨ θ.

Dependence Introduction Rule: ∃y∀xφ(x , y ,~z) ` ∀x∃y(=(~z , y) ∧ φ(x , y ,~z)).

Dependence Distribution rule

Dependence Elimination Rule

Theorem (Completeness Theorem)

The above axioms and rules are complete with respect to the team semantics. (Kontinen-V.
2011)
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Social choice

A field where dependence and independence concepts arise naturally is the theory of
social choice.

Suppose we have n voters x1, . . . , xn, each giving his or her (linear) preference quasi-order
<xi on some finite set A of alternatives. We call such sequences p1, . . . , pn profiles.

Let us denote the social well-fare function by y , which is likewise a preference order <y .

Naturally we assume
=(x1, . . . , xn, y).
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1 A team is Paretian if the team satisfies the first order formula:

(a <x1 b ∧ . . . ∧ a <xn b)→ a <y b,

for all a, b ∈ A. Note that this means that every individual row satisfies the formula.

2 A team is dictatorial if in the team

x1 = y ∨B . . . ∨B xn = y .

3 A team respects independence of irrelevant alternatives if it satisfies for all a, b ∈ A:

=({a <x1 b, . . . , a <xn b}, {a <y b}).

Note that this is a Boolean dependence atom.

4 A team supports voting independence, if it satisfies for all i :

xi ⊥ {xj : j 6= i}.
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Definition

We introduce a new universality atom ∀(x1, . . . , xn) with the intuitive meaning that any
combination of values (in the given domain) for x1, . . . , xn is possible. A team X satisfies

∀(x1, . . . , xn),

if for every a1, . . . , an ∈ M there is s ∈ X such that s(x1) = a1, . . . , s(xn) = an.

Axioms for the universality atoms are:

1 ∀(xy) implies ∀(x) (Weakening)

2 ∀(xy) implies ∀(yx) (Symmetry)

Approximate universality: All values occur, apart from p-few exceptions.
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Lemma

Suppose M |=X ∀(x1) ∧ ... ∧ ∀(xn) ∧
∧n

i=1(xi ⊥ {xj : j 6= i}). Then M |=X ∀(x1, . . . , xn).

Could be taken as an axiom.
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Proof.

Let a1, . . . , an ∈ M be given. Because

M |=X

n∧
i=1

∀(xi ),

there are si ∈ X such that si (xi ) = ai for all 1 ≤ i ≤ n. Using

M |=X

n∧
i=1

xi⊥{xj : j 6= i}

we can construct inductively s ′1, . . . , s
′
n ∈ X such that

1 s ′1 = s1,

2 s ′i+1(xi+1) = si+1(xi+1),

3 s ′i+1(xj) = s ′i (xj), for j 6= i + 1.

It follows that s ′n(x1) = a1, . . . , s
′
n(xn) = an.
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In the social choice context

∀(x1) ∧ ... ∧ ∀(xn) ∧
n∧

i=1

(xi⊥{xj : j 6= i})

says: “We consider the possibility that for any voter and any preference order there is some
profile (voting result, row) in which that voter voted that preference order, but we assume that
the voters choose their preference orders independently of each other”, which seems
reasonable. Let us call the assumption

∀(x1) ∧ ... ∧ ∀(xn)

the freedom of choice assumption. Together with voting independence it implies, by the
previous Lemma, that all patterns of voting can arise.
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Theorem (Arrow 1963)

Voting independence, freedom of choice, Pareto and respect of independence of irrelevant
alternatives together imply dictatorship. In symbols,

{=(x1, . . . , xn, y),∧
a,b∈A((a ≤x1 b ∧ . . . ∧ a ≤xn b)→ a ≤y b),∧
a,b∈A =({a ≤x1 b, . . . , a ≤xn b}, {a ≤y b}),
∀(x1), . . . ,∀(xn),

∧n
i=1 xi ⊥ {xj : j 6= i}}

|= x1 = y ∨B . . . ∨B xn = y .
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Physics, joint work with Abramsky

Quantum physics provides a rich field of highly non-trivial dependence and independence
concepts. Some of the most fundamental questions of quantum physics are about
dependence and independence of outcomes of experiments.

Bell inequalities imply that the correlation which is observed between the measurements
of the spin of two entangled particles along different axis cannot be realized by a function
that assigns to any direction in space a definite value which is the value of the spin along
the given direction.
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Observational teams

One of the intuitions behind the concept of a team is a set of observations, such as readings of
physical measurements. Let us consider a experiments

q1, ..., qn.

Each experiment has an input xi and an output yi .
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Observational teams

After m rounds of making the experiments q1,...,qn we have the data

X =

x1 y1 . . . xn yn
a1

1 b1
1 . . . a1

n b1
n

a2
1 b2

1 . . . a2
n b2

n
...

... . . .
...

...
am1 bm

1 . . . amn bm
n
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Determinism

Using the dependence atom =(~x , ~y) we can say that the team of data X supports strong
determinism if it satisfies

=(xi , yi )

for all i = 1, ..., n.
Respectively, we can say that the team X supports weak determinism if it satisfies

=(x1, ..., xn, yi )

for all i = 1, ..., n.
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Hidden variables

An important role in models of quantum physics is played by the so-called hidden variables,
variables that have an unobservable outcome and no input. In the presence of a hidden
variable z we redefine strong determinism as =(~xz , ~y), rather than just =(~x , ~y), and weak
determinism as =(xiz , yi ), rather than just =(xi , yi ).
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A hidden variable team is a team of the form

Y =

x1 y1 . . . xn yn z1 . . . zl
a1

1 b1
1 . . . a1

n b1
n γ1

1 . . . γ1
l

a2
1 b2

1 . . . a2
n b2

n γ2
1 . . . γ2

l
...

... . . .
...

...
...

...
...

am1 bm
1 . . . amn bm

n γm1 . . . γml

where γ ij are the hidden variables.
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Single-valuedness

A team X is said to support single-valuedness of the hidden variable z if z has only one
value in the team.

We can express this with the formula
=(z).
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A team X is said to support no-signalling if the following holds: Suppose the team X has two
measurement-outcome combinations s and s ′ with input xi the same. So now s(yi ) is a
possible outcome of experiment qi in view of X . We demand that s(yi ) is also a possible
outcome if the inputs s(xj), j 6= i , are changed to s ′(xj).
We can express no-signalling with the formula

yi ⊥xi {xj : j 6= i}.
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An empirical team X is said to support z-independence if the following holds: Suppose the
team X has two measurement-outcome combinations s and s ′. Now the hidden variable zi has
some value s(zi ) in the combination s. We demand that s(zi ) should occur as the value of the
hidden variable also if the inputs s(~x) are changed to s ′(~x).
We can express z-independence with the formula

zi ⊥ ~x .
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An empirical team X is said to support Outcome-independence if the following holds:
Suppose the team X has two measurement-outcome combinations s and s ′ with the same
total input data ~x and the same hidden variable zk , i.e. s(~x) = s ′(~x) and s(z) = s ′(z). We
demand that output s(yi ) should occur as an output also if the outputs s({yj : j 6= i}) are
changed to s ′({yj : j 6= i}).
We can express output-independence with the formula

yi ⊥~xz {yj : j 6= i}.
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An empirical team X is said to support parameter-independence if the following holds:
Suppose the team X has two measurement-outcome combinations s and s ′ with the same
input data about x and the same hidden variable zk , i.e. s(x) = s ′(x) and s(z) = s ′(z). We
demand that output s(yi ) should occur as a possible output also if the inputs s({xj : j 6= i})
are changed to s ′({xj : j 6= i}).
We can express parameter-independence with the formula

{xj : j 6= i} ⊥xiz yi
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Picture by Noson Yanofsky in “A Classification of Hidden-Variable Properties”, Workshop on Quantum Logic Inspired by Quantum Computation, Indiana, 2009.
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Lemma

Weak determinism implies outcome independence.

Proof.

Weak determinism is =(~xz , y) and outcome independence is yi ⊥~xz {yj : j 6= i}.
The Constancy Rule says: =(~x , y) |= y ⊥~x z .
By substituting ~xz to ~x we get:

=(~xz , y) |= yi ⊥~xz {yj : j 6= i},

as desired.
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Lemma

Strong determinism implies parameter independence.

Proof.

This is again just the Constancy Rule.

=(xi , yi ) |= {xj : j 6= i} ⊥xiz yi .
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Lemma

Parameter independence and weak determinacy imply strong determinacy.

Proof.

We want
=(~xz , yi ) ∧ {xj : j 6= i} ⊥xiz yi |==(xiz , yi )

This is an instance of the First Transitivity Rule

y ⊥~uz ~w ∧ ~u ⊥z y |= y ⊥z ~w ,

where ~u = {xj : j 6= i}, y = yi and z = xiz .
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No-go results

No-go results are constructions of special teams.
A hidden variable team Y realizes the team X if

s ∈ X ⇐⇒ ∃s ′ ∈ Y (s ′(x1) = s(x1) ∧ s ′(y1) = s(y1) ∧ ...

s ′(xn) = s(xn) ∧ s ′(yn) = s(yn)).
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Einstein-Podolsky-Rosen paradox: There is an empirical model (team) which cannot be realized by
any hidden variable model satisfying single-valuedness of the hidden variable and
outcome-independence.
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Proof.

We consider a system in which the input x1 is constant 0 and the input x2 is constant 1. The
output in both can be a or b. Let

X =

x1 y1 x2 y2

0 a 1 b
0 b 1 a

Suppose this is realized by a hidden variable model

X =

x1 y1 x2 y2 z

0 a 1 b λ1

0 b 1 a λ2

Single-valuedness implies λ1 = λ2. Output-independence fails because the row

x1 y1 x2 y2 z

0 a 1 a λ1

is missing.
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Bell’s Theorem 1964

Bell’s Theorem in quantum foundations and quantum information theory, the basis of
quantum computation, can be seen as the existence of a team, even arising from real
physical experiments, violating a dependence logic sentence, which expresses the (falsely)
assumed locality of quantum world. (Joint work with Abramsky, Hyttinen and Paolini).

A very logical form of Bell’s Theorem in quantum foundations (Hyttinen-Paolini 2014).
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∀~x∃~yR(~x ,~y) ∧ [∀~x∀~y(R(~x ,~y)→
∀~u∃~v(R(~u,~v) ∧ (~x = ~u → ~y = ~v)∧∧n

i=1 =(~x~yui , vi))]
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Punchline

The emergent logic of dependence and independence provides a common mathematical
basis for fundamental concepts in biology, social science, physics, mathematics and
computer science.

We can find fundamental principles governing this logic.

Algorithmic results show—as can be expected—that dependence logic has higher
complexity than ordinary first order (propositional, modal) logic.

Important parts can be completely axiomatized, other parts are manifestly beyond the
reach of axiomatization.
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Thank you!
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