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Abstract. This paper concerns linear context-free languages (LIN). We
prove that LIN ⊆ NC1 (under UE∗−uniformity reduction). We introduce
a new normal form for context-free grammars, called Dyck normal form.
Using this new normal form we prove that for each context-free language
L there exist an integer K and a homomorphism ϕ such that L = ϕ(D′K),
where D′K ⊆ DK , and DK is the one-sided Dyck language over K letters.
Based on these results we prove that each linear context-free language
can be recognized in O(log n) time and space by an indexing alternating
Turing machine (ATM). Since the class of languages recognizable by an
indexing ATM in logarithmic time equals the UE∗ -uniform NC1 class,
result proved in [15], we obtain that LIN ⊆ NC1, and consequently, LIN
⊆ L (where L is the class of languages recognizable by a deterministic
Turing machine in logarithmic space). On the other hand, according to
[17], each language in LIN belongs to L if and only if L = NL (where NL is
the class of languages recognizable by a nondeterministic Turing machine
in logarithmic space). Hence, besides the inclusion of linear context-free
languages in NC1, problem left open in [12], we also resolve the long-

standing open question L
?
= NL in the favor of L = NL.

1 Introduction

Due to their ability in covering a large variety of computational phenomena oc-
curring in parallel computing, Boolean circuits have been proved to be one of
the most suitable models of parallel computation. This paper does not directly
deal with circuits but indirectly through the notions of the NC1 class and al-
ternating Turing machine (ATM). Therefore, in this section we provide only a
brief description of circuits and uniformity restrictions imposed on them. For
the formal definition of Boolean circuits, other notions and results concerning
circuit complexity and Boolean functions, the reader is referred to [1], [15], [18],
and [19].

Informally, a Boolean circuit is an assembly composed of a fixed number n
of Boolean input variables x1, ..., xn, a finite number of gates over a basis set of
Boolean functions B, and a fixed number m of outputs y1, ..., ym. The graphical
representation of a Boolean circuit is viewed as a finite directed acyclic graph
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(V , E) in which nodes are labeled by input variables, gates, and outputs [18].
Edges in this graph are rigorously partitioned and ordered according to the type
of Boolean functions belonging to the basis B, such that edges belonging to the
same partition connect nodes corresponding to arguments of the same Boolean
function. The in-degree (out-degree) called fan-in (fan-out) of each node depends
on the type of the variable that labels that node and on the partition defined on
the set E. Each output element yi, 1 ≤ i ≤ m, not necessarily labeling a node
with fan-out 0, gives the ith bit of the output y = (y1, ..., ym).

Since the input of a Boolean circuit has a fixed length, this model builds for
each input length a circuit of its own. Therefore, for arbitrarily large number of
inputs, whose lengths cover an infinite set of instances of a problem, there would
be an infinite number of circuits solving the problem. Due to this characteristic
Boolean circuits are non-uniform models of computation, in opposite with finite
state automata or Turing machines, for which one device is sufficient to deal with
all inputs of arbitrary length. This is the reason why a uniformity restriction
should be imposed on Boolean circuits in order to rank them among the realistic
models of computations, i.e., to make them algorithmically describable. This
can be done by restructuring an infinite family of circuits according to several
rules that make them “regular” and “uniformly constructible”. Under uniformity
conditions Boolean circuits are called uniform Boolean circuits. This makes it
possible to compare Boolean circuits with other parallel or sequential models of
computations such as alternating or sequential Turing machines.

The main complexity measures concerning Boolean circuits are the size of
a circuit, i.e., the number of gates (that corresponds to the time complexity of
a Turing machine, and to the space complexity of an ATM), and the depth of
the circuit (that corresponds to the space of a Turing machine, and to the time
of an ATM). Connections between the complexity measures of Boolean circuits
and Turing machines or ATMs can be found in [2] and [15], respectively.

The NC class is defined as the class of all functions computable by a family
of uniform Boolean circuits with polynomial size and depth bounded by a poly-
nomial in log n. If for each integer i, we denote by NCi the class of functions
computable by polynomial size Boolean circuits, with depth O(logi n) and fan-in
two, then we have NCi ⊆ NCi+1, i ≥ 1, and NC =

⋃
i≥1NCi.

Depending on the type of the uniformity restriction, i.e., speedups on time
and space imposed on (alternating) Turing machines simulating a family of cir-
cuits, we obtain several NC “uniform” classes. The uniformity condition on which
we are interested in this paper is the UE∗ -uniformity. It concerns logarithmic re-
strictions on the time and space needed by an ATM to simulate a family of
circuits of size s(n) and depth t(n) (see [15]). This gives birth to the so-called
UE∗ -uniform NC1 class. Depending on the type of the uniformity several char-
acterizations of the NC class in terms of ATMs are presented in [15]. It is proved
that for i ≥ 2, all NCi classes behaves the same no matter which uniformity
restriction is imposed on circuits, i.e., NCi = ASPACE, TIME(log n, logi n),
for all i ≥ 2, where ASPACE, TIME(s(n), t(n)) denotes the class of languages
acceptable by an ATM in simultaneous space s(n) and time t(n). For i = 1, this
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equality holds only for the UE∗ -uniformity, more precisely, UE∗ -uniform NC1 =
ASPACE, TIME(log n, log n)= ALOGTIME.

The following relationships hold between NC1, NC2, and (nondeterministic)
Turing time and space complexity classes: NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC ⊆ P.
The inclusion NC1 ⊆ L comes from [2] where it is proved that DEPTH(log n) ⊆
DSPACE(log n) = L, where DEPTH(log n) is a log-time uniformity condition
imposed on the depth of Boolean circuits. Later on it has been proved that
ALOGTIME = DEPTH(log n), which traces the above inclusion for the UE∗

uniformity condition. However, NC1 is contained in L no matter which uniformity
restriction is imposed to circuits. Hence, NC1 ⊆ L “universally” holds.

Concerning the Chomsky hierarchy, it is well known that REG ⊂ NC1, and
CFL ⊆ NC2 [15]. Up to now this is the best upper bound for the whole class of
CFLs. In [12] it is proved that several CFLs, such as Dk languages, i.e., one-sided
Dyck language over K letters, k ≥ 1, structural, bracketed and deterministic
linear CFLs are contained in NC1 (under UE∗ -uniformity). It is a long-standing
open problem whether the entire class of CFLs, or at least the LIN class, is
included in the UE∗ -uniform NC1. Proving that CFL, or at least LIN, is contained
in NC1 would imply that L equals NL. This holds due to the fact that for both
classes LIN and CFL there exists a “hardest” language which is NL-complete.

Let A and B be two languages over a finite alphabet Σ. A is log(n)-space
reducible to B, denoted as A ≤log B, if there exists a log(n)-space computable
function f , such that for each x ∈ Σ∗, it holds that x ∈ A if and only if
f(x) ∈ B. A language L ⊆ Σ∗ is log(n)-complete if L ∈ NL and, for each L′ ∈
NL, L′ ≤log L, i.e., the language L is universal in the class NL (each other
language from NL is reducible to it).

In [17] it is proved that there exists an NL-complete linear language (the
hardest linear language in the sense of completeness), while in [16] and [13] it
is proved that there exists an NL-complete context-free language (the hardest
context-free language). Proving that LIN is contained in NC1 implies LIN ⊆ L,
i.e., L contains also the hardest linear language. Hence, L contains all languages
from NL reducible to the hardest language (see [16]), i.e., NL ⊆ L. The same
reasoning holds for CFLs. In this paper we focus on linear context-free languages
and we prove that LIN ⊆ NC1. Therefore, according to [17], we have settled the
log-space problem in the favor of L = NL.

In order to prove the inclusion LIN ⊆ NC1 we first introduce in Section 2 a
new normal form for CFLs, called Dyck normal form. We have been inspired to
develop this new normal form by the general theory of Dyck words and Dyck
languages, that turned out to play a crucial role in the description and charac-
terization of CFLs (see [7], [8], and [12]).

The Dyck normal form is a syntactical restriction of the Chomsky normal
form, in which the two nonterminals occurring on the right-hand side of a rule are
paired nonterminals, in the sense that each left (right) nonterminal of a pair has
a unique right (left) pairwise. This pairwise property imposed on the structure
of the right-hand side of each rule induces a nested structure on the derivation
tree of each word generated by a grammar in Dyck normal form. More precisely,
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each derivation tree of a word generated by a grammar in Dyck normal form,
read in the depth-first order is a Dyck word, hence the name of the normal form.
This property, along with several other terminal rewriting conditions imposed
to a grammar in Dyck normal form, stands at the basis of our intuition that at
least for linear languages, the derivation tree of each word might be “rebuilt” by
an ATM in logarithmic time and space.

Using the Dyck normal form we give a new characterization of CFLs in terms
of Dyck languages. We prove, in Section 3, that for each language L ∈ CFL, there
exist an integer K and a homomorphism ϕ such that L = ϕ(D′K), where D′K is a
subset of the one-sided Dyck language over K letters. We apply the Dyck normal
form for linear languages and using the homomorphism ϕ, we prove in Section
4 the main result of this paper, i.e., each language in LIN can be recognized in
O(log n) time and space by an indexing ATM. With respect to [15], we have LIN
⊆ NC1. As a consequence, NL becomes “reducible” to L. On the other hand,
it is well known from [5] that D0L ⊂ AC0, which together with LIN ⊆ NC1,
provides the strict containment of linear context-free languages in NC1.

2 Dyck normal form

A normal form for context-free grammars (CFGs) consists of several restrictions
imposed to the structure of context-free productions, especially on the number
of terminals and nonterminals allowed on the right-hand side of a context-free
rule. In order to be correct a normal form for CFGs should generate the whole
class of CFLs. For formal definitions, results, and surveys on normal forms, the
reader is referred to [10].

Definition 1. A context-free grammar G = (N,T, P, S) is said to be in Dyck
normal form if it satisfies the following conditions:

1. G is in Chomsky normal form,
2. if A→ a ∈ P , A ∈ N , A 6= S, a ∈ T , then no other rule in P rewrites A,
3. for each A ∈ N such that X → AB ∈ P (X → BA ∈ P ) there is no other

rule in P of the form X ′ → B′A (X ′ → AB′),
4. for each rules X → AB, X ′ → A′B (X → AB, X ′ → AB′), we have A = A′

(B = B′).

Note that the Dyck normal form is a Chomsky normal form on which several
restrictions on the positions of nonterminals occurring on the right hand-side of
each context-free production are imposed. The reasons for which we introduce
these restrictions (items 2, 3, and 4 in Definition 1) are the following. The second
condition in Definition 1 allows to make a partition between those nonterminals
rewritten by nonterminals, and those nonterminals rewritten by terminals. This
enables us, in Section 3, to define a homomorphism from Dyck words to words
generated by a grammar in Dyck normal form. The third and fourth conditions
allow us to split the set of nonterminals into pairwise nonterminals, and thus to
introduce bracketed pairs. This restriction (or pairwise property of nonterminals
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occurring on the right-hand side of a context-free rule) is intensively used in
Section 4 during several guessing procedures that estimate, by using only log-
arithmic time and space, the structure of the derivation tree associated with a
word belonging to a linear language. The next theorem proves that the Dyck
normal form is correct.

Theorem 1. For each CFG G = (N,T, P, S) there exists a grammar G′ =
(N ′, T, P ′, S) such that L(G) = L(G′) and G′ is in Dyck normal form.

Proof. Suppose that G is a CFG in Chomsky normal form. Otherwise, using the
algorithm as described in [10] or [14], we can convert G into Chomsky normal
form. In order to convert G from Chomsky normal form into Dyck normal we
proceed as follows.

Step 1 We check whether P contains two (or more) rules of the form A → a,
A → b, a 6= b. If it does, then for each rule A → b, a 6= b, we introduce a new
variable Ab. We add the new rule Ab → b, and we remove the rule A → b. For
each rule of the form X → AB (X → BA) we add the new rule X → AbB
(X → BAb), while for a rule of the form X → AA we add three new rules
X → AbA, X → AAb, X → AbAb, without removing the initial rules. We call
this procedure an Ab-terminal substitution of A.

For each rule A→ a, a ∈ T , we check whether a rule of the form A→ B1B2,
B1, B2 ∈ N , exists in P . If it does, then a new nonterminal Aa is introduced and
we perform an Aa-terminal substitution of A for the rule A→ a. �

Step 2 Suppose that there exist two (or more) rules of the form X → AB and
X ′ → B′A. If we have agreed on preserving only the left occurrences of A in
the right-hand sides, then according to condition 3 of Definition 1, we have to
remove all right occurrences of A. To do this we introduce a new nonterminal ZA
and all right occurrences of A, preceded at the left side by Z, in the right-hand
side of a rule, are substituted by ZA. For each rule that rewrites A, A → Y ,
Y ∈ N2∪T , we add a new rule of the form ZA→ Y , preserving the rule A→ Y .
We call this procedure an ZA-nonterminal substitution of A. According to this
procedure, for the rule X ′ → B′A, we introduce a new nonterminal B′A, we
add the rule X ′ → B′B′A, and remove the rule X ′ → B′A. For each rule that
rewrites A, of the form1 A → Y , Y ∈ N2 ∪ T , we add a new rule of the form

B′A→ Y , preserving the rule A→ Y . �

Step 3 Finally, for each two rules X → AB, X ′ → A′B (X → BA, X ′ → BA′)
with A 6= A′, a new nonterminal A′B (BA′) is introduced to replace B from the
second rule, and we perform an A′B(BA′)-nonterminal substitution of B, i.e.,
we add X ′ → A′A′B, and remove X ′ → A′B. For each rule that rewrites B,
of the form B → Y , Y ∈ N2 ∪ T , we add a new rule A′B → Y by preserving
the rule B → Y . In the case that A′ occurs on the right-hand side of another
rule, such that A′ matches at the right side with another nonterminal different
of A′B, then the procedure described above is repeated for A′, too. �
1 This case deals with the possibility of having Y = B′B′A, too.
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If one of the conditions 2, 3, and 4 in Definition 1, has been settled, we do
not have to resolve it once again in further steps of this procedure. The new
grammar G′ built as described in steps 1, 2, and 3 has the set of nonterminals
N ′ and the set of productions P ′ composed of all nonterminals from N and
productions from P , plus/minus all nonterminals and productions, respectively
introduced/removed according to the substitutions performed during the above
steps. Next we prove that grammars G = (N,T, P, S), in Chomsky normal form,
and G′ = (N ′, T, P ′, S), in Dyck normal form, generate the same language.
In this order, consider the homomorphism hd : N ′ ∪ T → N ∪ T defined by
hd(x) = x, x ∈ T , hd(X) = X, for X ∈ N , and hd(X

′) = X for X ′ ∈ N ′ − N ,
X ∈ N such that X ′ is a (transitive2) X ′-substitution of X, terminal or not, in
the above construction of the grammar G′.

To prove that L(G′) ⊆ L(G) we extend hd to a homomorphism from (N ′∪T )∗

to (N∪T )∗ defined on the classical concatenation operation. It is straightforward
to prove by induction, that for each α ⇒∗G′ δ we have hd(α) ⇒∗G hd(δ). This
implies that for any derivation of a word w ∈ L(G′), i.e., S ⇒∗G′ w, we have
hd(S)⇒∗G hd(w), i.e., S ⇒∗G w, or equivalently, L(G′) ⊆ L(G).

To prove that L(G) ⊆ L(G′) we make use of the CYK (Cocke-Younger-
Kasami) algorithm as described in [14].

Let w = a1a2...an be an arbitrary word from L(G), and Vij , i ≤ j, i, j ∈
{1, ..., n}, be the triangular matrix of size n × n built with the CYK algorithm
(see [14]). Since w ∈ L(G), we have S ∈ V1n. We prove that w ∈ L(G′), i.e.,
S ∈ V ′1n, where V ′ij , i ≤ j, i, j ∈ {1, ..., n} forms the triangular matrix obtained
by applying the CYK algorithm to w according to G′ productions.

We consider two relations ĥt : N ∪ T → N ′ ∪ T and ĥ¬t : N → N ′. The
first relation is defined by ĥt(x) = x, x ∈ T , ĥt(S) = S, if S → t, t ∈ T ,

is a rule in G, and ĥt(X) = X ′, if X ′ is a (transitive) X ′-terminal substi-

tution3 of X, and X → t is a rule in G. Finally, ĥt(X) = X if X → t ∈
P , t ∈ T . The second relation is defined as ĥ¬t(S) = S, ĥ¬t(X) = {X} ∪
{X ′|X ′ is a (transitive) X ′-nonterminal substitution of X} and ĥ¬t(X) = X, if
there is no substitution of X and no rule of the form X → t, t ∈ T , in G. Notice
that ĥx(X1 ∪X2) = ĥx(X1) ∪ ĥx(X2), for Xi ⊆ N , i ∈ {1, 2}, x ∈ {t,¬t}. Fur-

thermore, using the relation ĥt, each rule X → t in P has a corresponding set
of rules {X ′ → t|X ′ ∈ ĥt(X), X → t ∈ P} in P ′. Each rule A→ BC in P has a

corresponding set of rules {A′ → B′C ′|A′ ∈ ĥ¬t(A), B′ ∈ ĥ¬t(B) ∪ ĥt(B), C ′ ∈
ĥ¬t(C) ∪ ĥt(C), B′ and C ′ are pairwise nonterminals, A→ BC ∈ P} is in P ′.

Consider V ′ii = ĥt(Vii) and V ′ij = ĥ¬t(Vij), i < j, i, j ∈ {1, ..., n}. We claim
that V ′ij , i, j ∈ {1, ..., n}, i ≤ j, defined as before, forms the triangular matrix
obtained by applying the CYK algorithm to rules that derive w in G′.

2 There exist Xk∈N , such that X ′ is an X ′-substitution of Xk, Xk is an Xk-substi-
tution of Xk−1,..., and X1 is an X1-substitution of X. All of them substitute X.

3 There may exist several (distinct) terminal (nonterminal) substitutions for the same
nonterminal X. This property makes ĥt (ĥ¬t) to be a relation.
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First, observe that for i = j, we have V ′ii = ĥt(Vii) = {A|A → ai ∈ P ′},
i ∈ {1, ..., n}, due to the definition of the relation ĥt. Now let us consider k = j−i,
k ∈ {1, ..., n− 1}. We want to compute V ′ij , i < j.

By definition, we have Vij =
⋃j−1
l=i {A|A → BC,B ∈ Vil, C ∈ Vl+1j}, so that

V ′ij = ĥ¬t(Vij)= ĥ¬t(
⋃j−1
l=i {A|A→ BC,B ∈ Vil, C ∈ Vl+1j})=

⋃j−1
l=i ĥ¬t({A|A→

BC,B ∈ Vil, C ∈ Vl+1j}) =
⋃j−1
l=i {A′|A′ → B′C ′, A′ ∈ ĥ¬t(A), B′ ∈ ĥ¬t(B) ∪

ĥt(B), B ∈ Vil, C ′ ∈ ĥ¬t(C) ∪ ĥt(C), C ∈ Vl+1j , B
′ and C ′ are pairwise nonter-

minals, A→ BC ∈ P}. Let us explicitly develop the last union.
If k = 1, then l ∈ {i}. For each i ∈ {1, ..., n − 1} we have V ′ii+1 = {A′|A′ →

B′C ′, A′ ∈ ĥ¬t(A), B′ ∈ ĥ¬t(B) ∪ ĥt(B), B ∈ Vii, C
′ ∈ ĥ¬t(C) ∪ ĥt(C), C ∈

Vi+1i+1, B′ and C ′ are pairwise nonterminals, A → BC ∈ P}. Due to the fact
that B ∈ Vii and C ∈ Vi+1i+1, B′ is a terminal substitution of B, while C ′ is
a terminal substitution of C. Therefore, we have B′ /∈ ĥ¬t(B), C ′ /∈ ĥ¬t(C),

so that B′ ∈ ĥt(B), for all B ∈ Vii, and C ′ ∈ ĥt(C), for all C ∈ Vi+1i+1, i.e.,

B′ ∈ ĥt(Vii) = V ′ii and C ′ ∈ ĥt(Vi+1i+1) = V ′i+1i+1. Therefore, V ′ii+1 = {A′|A′ →
B′C ′, B′ ∈ V ′ii, C ′ ∈ V ′i+1i+1}.

If k ≥ 2, then l ∈ {i, i + 1, ..., j − 1}, and V ′ij =
⋃j−1
l=i {A′|A′ → B′C ′, A′ ∈

ĥ¬t(A), B′ ∈ ĥ¬t(B) ∪ ĥt(B), B ∈ Vil, C
′ ∈ ĥ¬t(C) ∪ ĥt(C), C ∈ Vl+1j , B

′

and C ′ are pairwise nonterminals, A → BC ∈ P}. We now compute the

first set of the above union, i.e., V ′i = {A′|A′ → B′C ′, A′ ∈ ĥ¬t(A), B′ ∈
ĥ¬t(B)∪ ĥt(B), B ∈ Vii, C ′ ∈ ĥ¬t(C)∪ ĥt(C), C ∈ Vi+1j , B

′ and C ′ are pairwise
nonterminals, A → BC ∈ P}. By the same reasoning as before, the condition

B′ ∈ ĥ¬t(B) ∪ ĥt(B), B ∈ Vii, is equivalent with B′ ∈ ĥt(Vii) = V ′ii.
Because i + 1 6= j, C ′ is a nonterminal substitution of C. Therefore, C ′ /∈

ĥt(C), and the condition C ′ ∈ ĥ¬t(C) ∪ ĥt(C), C ∈ Vi+1j is equivalent with

C ′ ∈ ĥ¬t(Vi+1j) = V ′i+1j . So that V ′i = {A′|A′ → B′C ′, B′ ∈ V ′ii, C ′ ∈ V ′i+1j}.
Using the same method for each l ∈ {i+ 1, ..., j− 1} we have V ′l = {A′|A′ →

B′C ′, A′ ∈ ĥ¬t(A), B′ ∈ ĥ¬t(B)∪ĥt(B), B ∈ Vil, C ′ ∈ ĥ¬t(C)∪ĥt(C), C ∈ Vl+1j ,
B′ and C ′ are pairwise nonterminals, A → BC ∈ P} = {A′|A′ → B′C ′, B′ ∈
V ′il, C

′ ∈ V ′l+1j}. In conclusion, V ′ij =
⋃j−1
l=i {A′|A′ → B′C ′, B′ ∈ V ′il, C ′ ∈ V ′l+1j},

for each i, j ∈ {1, ..., n}, i.e., V ′ij , i ≤ j, contains the nonterminals of the n × n
triangular matrix computed by applying the CYK algorithm to rules that derive
w in G′. Because w ∈ L(G), we have S ∈ V1n. That is equivalent with S ∈ V ′1n =

ĥt(V1n), if n = 1, and S ∈ V ′1n = ĥ¬t(V1n), if n > 1, i.e., w ∈ L(G′). ut

Corollary 1. Let G be a CFG in Dyck normal form. Any terminal derivation
in G producing a word of length n, n ≥ 1, takes 2n− 1 steps.

Proof. If G is a CFG in Dyck normal form, then it is also in Chomsky normal
form, and all properties of the latter hold. ut

Corollary 2. If G = (N,T, P, S) is a grammar in Chomsky normal form, and
G′ = (N ′, T, P ′, S) its equivalent in Dyck normal form, then there exists a ho-
momorphism hd : N ′ ∪ T → N ∪ T , such that any derivation tree of w ∈ L(G)
is the homomorphic image of a derivation tree of the same word in G′.
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Proof. Consider the homomorphism hd : N ′ ∪ T → N ∪ T defined as hd(At) =
hd(ZA) = hd(AZ) = A, for each At-terminal or ZA(AZ)-nonterminal substitu-
tion of A, and hd(t) = t, t ∈ T . The claim is a direct consequence of the way in
which the new nonterminals At, ZA, and AZ have been chosen. ut

Let G be a grammar in Dyck normal form. In order to emphasis the pairwise
brackets occurring on the right-hand side of each rule, each nonterminal A and B
occurring on a rule of the form X → AB, is replaced by a left and right bracket
[A and ]B , respectively. In each rule that rewrites A or B, we replace A by [A, and
B by ]B , respectively. Next, we present an example of the conversion procedure
described in Theorem 1, along with the homomorphism that lays between the
grammars in Chomsky and Dyck normal forms.

Example 1 Consider the CFG G = ({E, T,R}, {+, ∗, a}, E, P ) with P = {E →
a/T ∗R/E + T, T → a/T ∗R,R→ a}.

The Chomsky normal form of G is G′ = ({E0, E,E1, E2, T, T1, T2, R}, {+, ∗,
a}, E0, P

′) in which P ′ = {E0 → a/TT1/EE1, E → a/TT1/EE1, T → a/TT1,
T1 → T2R,E1 → E2T, T2 → ∗, E2 → +, R→ a}.

We now convert G′ into Dyck normal form. To do this, with respect to Defi-
nition 1, item 2, we first have to remove E → a and T → a. Then, according to
item 3, we remove the right occurrence of T from the rule E1 → E2T , along with
other transformations that may be required after completing these procedures.
Let E3 and T3 be two new nonterminals. We remove E → a and T → a, and
add the rules E3 → a, T3 → a, E0 → E3E1, E0 → T3T1, E → E3E1, E → T3T1,
E1 → E2T3, T → T3T1.

Let T ′ be the new nonterminal that replaces the right occurrence of T . We
add the rules E1 → E2T

′, T ′ → TT1, T ′ → T3T1, and remove E1 → E2T . We
repeat the procedure with T3 (added in the previous step), i.e., we introduce a
new nonterminal T4, remove E1 → E2T3, add E1 → E2T4 and T4 → a.

Due to the new nonterminals E3, T3, T4, item 4 does not hold. To have
accomplished this condition too, we introduce three new nonterminals E4 to re-
place E2 in E1 → E2T4, E5 to replace E1 in E0 → E3E1 and E → E3E1, and T5

to replace T1 in E0 → T3T1 and E → T3T1. We remove all the above rules and
add the new rules E1 → E4T4, E4 → +, E0 → E3E5, E → E3E5, E5 → E2T

′,
E5 → E4T4, E0 → T3T5, E → T3T5, and T5 → T2R. The Dyck normal form of
G′, using the bracket notation, is
G′′ = ({E0, [E , ]E1

, [E2
, [E3

, [E4
, ]E5

, ]T ′ , [T , ]T1
, [T2

, [T3
, ]T4

, ]R}, {+, ∗, a}, E0, P
′′),

P ′′ = {E0 → a/[T ]T1
/[E ]E1

/[E3
]E5

/[T3
]T5
, [E → [T ]T1

/[E ]E1
/[E3

]E5
/[T3

]T5
,

]E1 → [E2 ]T ′/[E4 ]T4 , ]E5 → [E2 ]T ′/[E4 ]T4 , [T → [T ]T1/[T3 ]T5 ,
]T ′ → [T ]T1/[T3 ]T5 , ]T1 → [T2 ]R, ]T5 → [T2 ]R,
[T2
→ ∗, [T3

→ a, ]T4
→ a, [E2

→ +, [E3
→ a, [E4

→ +, ]R → a}.
The homomorphism hd is defined as hd : N ′ ∪ T → N ′′ ∪ T , hd(E0) = E0,

hd([E) = hd([E3) = E, hd(]E1) = hd(]E5) = E1, hd([E2) = hd([E4) = E2,
hd([T ) = hd(]T ′) = hd([T3

) = hd(]T4
) = T , hd(]T1

) = hd(]T5
) = T1, hd([T2

) = T2,
hd(]R) = R, hd(t) = t, for each t ∈ T .
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The string w = a∗a∗a+a is a word in L(G′′) = L(G) generated, for instance,
by a leftmost derivation D in G′′ as follows.

D : E0 ⇒ [E ]E1 ⇒ [T ]T1 ]E1 ⇒ [T3 ]T5 ]T1 ]E1 ⇒ a ]T5 ]T1 ]E1 ⇒ a [T2 ]R ]T1 ]E1

⇒ a ∗ ]R ]T1 ]E1 ⇒ a ∗ a ]T1 ]E1 ⇒ a ∗ a [T2 ]R ]E1 ⇒ a ∗ a ∗ ]R ]E1 ⇒
a ∗ a ∗ a ]E1

⇒ a ∗ a ∗ a [E4
]T4
⇒ a ∗ a ∗ a + ]T4

⇒ a ∗ a ∗ a + a.

Applying hd to the derivation D of w in G′′ we obtain a derivation of w in
G′. If we consider T the derivation tree of w in G, and T ′ the derivation tree of
w in G′′, then T is the homomorphic image of T ′ through hd. ♣

A normal form is correct if it preserves the language generated by the origi-
nal grammar. This condition is called the weak equivalence, i.e., a normal form
preserves the language but may lose several other (important) syntactical or se-
mantical properties of the original grammar. It is well known that the Chomsky
normal form is a “strong” normal form in this respect. It preserves almost all
syntactical and semantical properties of the original grammar.

The Dyck normal form is at least as powerful as the Chomsky normal form,
not only because of the “tree homomorphism” existing between a grammar in
Chomsky normal form and its equivalent in Dyck normal, but also because the
Dyck normal form, due to the pairwise structure of the derivation, makes visible
possible correlations between linear languages or CFLs, and Dyck words and
Dyck languages. It is known that Dyck words have very interesting combinato-
rial structures and properties (see [7], [8]), while Dyck languages are of a low
complexity, i.e., they belong to the NC1 class (see [12]). The main aim of this
paper is to prove that an homomorphic relationship between Dyck languages
and linear languages makes LIN to collapse inside NC1.

This shows that looking for new normal forms can still be considered a vivid
topic in formal language theory. It is challenging to see how far can we go with a
normal form in order to preserve or emphasis syntactical properties (like deriva-
tion tree structures) and semantical properties (like ambiguities) of the original
grammars. Actually, these preservation properties make a normal form stronger
and more useful in fields such as descriptional and computational complexity,
pattern matchings and parsing, inference and learning theory.

3 Characterizations of CFLs by Dyck languages

Definition 2. Let Gk = (Nk, T, Pk, S) be a CFG in Dyck normal form with
|Nk − {S}| = 2k. Let D : S ⇒ u1 ⇒ u2 ⇒...⇒ un = w, n ≥ 2, be a leftmost
derivation of w ∈ L(G). The trace-word of w associated with the derivation D,
denoted as tw,D, is defined as the concatenation of nonterminals consecutively
rewritten in D, excluding the axiom. The trace-language associated with Gk,
denoted as  Lk, is  Lk = {tw,D|D is a leftmost derivation of w,w ∈ L(Gk)}.

The trace-word associated to w and the leftmost derivation D in Example 1
is ta∗a∗a+a,D = [E [T [T3 ]T5 [T2 ]R ]T1 [T2 ]R ]E1 [E4 ]T4 .
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Definition 3. A one-sided Dyck language over k letters, k ≥ 1, is a context-free
language defined by the grammar Γk = ({S}, Tk, P, S), where Tk = {[1, [2, ..., [k,
]1, ]2, ..., ]k} and P = {S → [i S ]i, S → SS, S → [i ]i | 1 ≤ i ≤ k}.

Let Gk = (Nk, T, Pk, S) be a CFG in Dyck normal form. In order to em-
phasize possible relations between the structure of trace-words from  Lk and the
structure of words belonging to the Dyck language, and also to keep control of
each bracketed pair occurring in the right-hand side of each rule from Gk, we fix
Nk = {S, [1, [2, ..., [k, ]1, ]2, ..., ]k}, and Pk to be composed of rules the of the
form X → [i ]i, 1 ≤ i ≤ k, and Y → t, X,Y ∈ Nk, t ∈ T .

Note that tw,D, w ∈ L(G), can also be read from the derivation tree in depth-
first order starting with the root, but ignoring the root and the leaves. In [12] it
is proved that Dk can be recognized by an alternating Turing machine (ATM) in
O(log n) time and space. The proof is based on a characterization of Dk, k ≥ 1,
presented in this paper through Definition 4, and Lemmas 1 and 2.

Definition 4. For a string w, let wi:j be its substring starting at the ith position
and ending at the jth position. Let h be a homomorphism defined as follows:

h([1) = h([2) = ... = h([k) = [1, h(]1) = h(]2) = ... = h(]k) =]1.
Let w ∈ Dk, 1 ≤ i ≤ j ≤ |w|, where |w| is the length of w. We say that (i, j)

is a matched pair of w, if h(wi:j) is balanced, i.e., h(wi:j) has an equal number of
[1’s and ]1’s and, in any prefix of h(wi:j), the number of [1’s is greater than or
equal to the number of ]1’s.

Lemma 1. A string w ∈ {[1 , ]1}∗ is in D1 if and only if it is balanced.

Consider the homomorphisms defined as follows (where λ is the empty string)
h1([1) = [1, h1(]1) =]1, h1([2) = h1(]2) = ... = h1([k) = h1(]k) = λ,
h2([2) = [1, h2(]2) =]1, h2([1) = h2(]1) = ... = h2([k) = h2(]k) = λ,
. . . . . . . . . . . . . . . .
hk([k) = [1, hk(]k) =]1, hk([1) = hk(]1) = ... = hk([k−1) = hk(]k−1) = λ.

Lemma 2. We have w ∈ Dk, k ≥ 2, if and only if the following conditions hold:
i) (1, |w|) is a matched pair, and ii) for all matched pairs (i, j), hk(wi:j) are in
D1, where k ≥ 1.

Definition 5. Let w ∈ Dk, (i, j) is a nested pair of w if (i, j) is a matched pair,
and either j = i+ 1, or (i+ 1, j − 1) is a matched pair.

Definition 6. Let w ∈ Dk, and (i, j) be a matched pair of w. We say that (i, j)
is reducible if there exists an integer j′, i < j′ < j, such that (i, j′) and (j′ + 1,
j) are matched pairs of w.

Consider w ∈ Dk, if (i, j) is a nested pair of w then (i, j) is an irreducible
pair. If (i, j) is a nested pair of w then (i+ 1, j − 1) may be a reducible pair.

Theorem 2. The trace-language associated with a CFG, G = (Nk, T, Pk, S) in
Dyck normal form, with |Nk| = 2k + 1, is a subset of the Dk.
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Proof. Let Nk = {S, [1, ..., [k, ]1, ..., ]k} be the set of nonterminals, w ∈ L(G),
and D a leftmost derivation of w. We show that any subtree of the derivation
tree, read in the depth-first order, by ignoring the root and the terminal nodes,
corresponds to a matched pair in tw,D. In particular, (1, |tw,D|) will be a matched
pair. Denote by tw,Di:j the substring of tw,D starting at the ith position and

ending at the jth position of tw,D. We show that for all matched pairs (i, j),
hk′(tw,Di:j) belong to D1, 1 ≤ k′ ≤ k. We prove these claims by induction on
the height of subtrees.

Basis. Certainly, any subtree of height n = 1, read in the depth-first order,
looks like [i ]i, 1 ≤ i ≤ k. Therefore, it satisfies the above conditions.

Induction step. Assume that the claim is true for all subtrees of height h,
h < n, and prove it for h = n. Each subtree of height n can have one of the
following structures. The level 0 of the subtree is marked by a left or right
bracket. This bracket will not be considered when we read the subtree. Denote
by [m the left son of the root. Then the right son is labeled by ]m. They are the
roots of a left and right subtree, for which at least one has the height n− 1.

Suppose that both subtrees have the height 1 ≤ h ≤ n − 1. By the in-
duction hypothesis, let us suppose further that the left subtree corresponds to
the matched pair (il, jl), and the right subtree corresponds to the matched pair
(ir, jr), ir = jl + 2, because the position jl + 1 is taken by ]m.

As h is a homomorphism, we have h(tw,Dil−1:jr
)= h([mtw,Dil:jl ]mtw,Djl+2:jr

)=

h([m)h(tw,Dil:jl)h(]m)h(tw,Djl+2:jr
). Therefore, h(tw,Dil−1:jr

) satisfies all condi-

tions in Definition 4, and thus (il − 1, jr) that corresponds to the considered
subtree of height n, is a matched pair.

Also, by the induction hypothesis, hk′(tw,Dil:jl) and hk′(tw,Dir:jr
) are in D1,

1≤k′≤k. Hence, hk′(tw,Dil−1:jr
)= hk′([m)hk′(tw,Dil:jl)hk′(]m)hk′(tw,Djl+2:jr

) ∈
{hk′(tw,Dil:jl)hk′(tw,Djl+2:jr

), [1hk′(tw,Dil:jl)]1hk′(tw,Djl+2:jr
)} belong to D1.

Note that in this case the matched pair (il − 1, jr) is reducible into (il −
1, jl + 1) and (jl + 2, jr), where (il − 1, jl + 1) corresponds to the substring
tw,Dil−1:jl+1 = [mtw,Dil:jl ]m. We refer to this structure as the left embedded

subtree, i.e., (il− 1, jl + 1) is a nested pair. A similar reasoning is applied for the
case when one of the subtrees has the height 0. Analogously, it can be shown
that the initial tree corresponds to the matched pair (1, |tw,D|), i.e., the first
condition of Lemma 2 holds.

So far, we have proved that each subtree of the derivation tree, and also each
left embedded subtree, corresponds to a matched pair (i, j) and (il, jl), such that
hk′(tw,Di:j) and hk′([mtw,Dil:jl ]m), 1 ≤ k′ ≤ k, are in D1.

Next we show that all matched pairs from tw,D correspond only to subtrees,
or left embedded subtrees, from the derivation tree. To derive a contradiction,
let us suppose that there exists a matched pair (i, j) in tw,D, that does not
correspond to any subtree, or left embedded subtree, of the derivation tree read
in the depth-first order. We show that this leads to a contradiction.

Since (i, j) does not correspond to any subtree, or left embedded subtree,
there exist two adjacent subtrees θ1 (a left embedded subtree) and θ2 (a right
subtree) such that (i, j) is composed of two adjacent “subparts” of θ1 and θ2.
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In terms of matched pairs, if θ1 corresponds to the matched pair (i1, j1) and θ2

corresponds to the matched pair (i2, j2), such that i2 = j1 + 2, then there exists
a suffix si1−1:j1+1 of tw,Di1−1:j1+1, and a prefix pi2:j2 of tw,Di2:j2

, such that
tw,Di:j = si1−1:j1+1pi2:j2 . Furthermore, without loss of generality, we assume

that (i1, j1) and (i2, j2) are nested pairs. Otherwise, the matched pair (i, j) can
be “narrowed” until θ1 and θ2 are characterized by two nested pairs. If (i1, j1)
is a nested pair, then so is (i1 − 1, j1 + 1).

Since si1−1:j1+1 is a suffix of tw,Di1−1:j1+1 and (i1 − 1, j1 + 1) is a matched

pair, with respect to Definition 4, the number of ]1’s in h(si1−1:j1+1) is greater
than or equal to the number of [1’s in h(si1−1:j1+1). On the other hand, si1−1:j1+1

is also a prefix of tw,Di:j , because (i, j) is a matched pair, by our hypothesis.

Therefore, the number of [1’s in h(si1−1:j1+1) is greater than or equal to the
number of ]1’s in h(si1−1:j1+1)

Hence, the only possibility for si1−1:j1+1 to be a suffix for tw,Di1−1:j1+1

and a prefix for tw,Di:j is the equality between the number of [1’s and ]1’s in

h(si1−1:j1+1). This property holds if and only if si1−1:j1+1 corresponds to a
matched pair in tw,Di1−1:j1+1, i.e., if is and js are the start and the end positions

of si1−1:j1+1 in tw,Di1−1:j1+1, then (is, js) is a matched pair. Thus, (i1−1, j1 +1)

is a reducible pair into (i1 − 1, is − 1) and (is, js), where js = j1 + 1. We have
reached a contradiction, i.e., (i1 − 1, j1 + 1) is reducible.

Therefore, the matched pairs in tw,D correspond to subtrees, or left embedded
subtrees, in the derivation tree. For these matched pairs we have already proved
that they satisfy Lemma 2. Accordingly, tw,D ∈ Dk, and consequently the trace-
language associated with G is a subset of Dk. ut

Theorem 3. Given a CFG G there exist an integer K, a homomorphism ϕ,
and a subset D′K of the Dyck language DK , such that L(G) = ϕ(D′K).

Proof. Let G be a CFG and Gk = (Nk, T, Pk, S) be the Dyck normal form of
G, such that Nk = {S, [1, [2, ..., [k, ]1, ]2, ..., ]k}. Let  Lk be the trace-language
associated with Gk. If {tk+1, ..., tk+p} is an ordered subset of T , such that S →
tk+i ∈ P , 1 ≤ i ≤ p, then let Nk+p = Nk ∪ {[tk+1

, ..., [tk+p
, ]tk+1

, ...]tk+p
}, and

Pk+p = Pk ∪ {S → [tk+i
]tk+i

, [tk+i
→ tk+i, ]tk+i

→ λ|S → tk+i ∈ P, 1 ≤ i ≤
p}. Certainly, the new grammar Gk+p = (Nk+p, T, Pk+p, S) generates the same
language as Gk.

Let ϕ : (Nk+p − {S})∗ → T ∗ be the homomorphism defined by ϕ(N) = λ,
for each rule of the form N → XY , N,X, Y ∈ Nk − {S}, and ϕ(N) = t, for
each rule of the form N → t, N ∈ Nk − {S}, and t ∈ T , ϕ([k+i) = tk+i, and
ϕ(]k+i) = λ, for each 1 ≤ i ≤ p.

It is evident that L = ϕ(D′K), where K = k + p, D′K =  Lk ∪ Lp, and
Lp = {[tk+1

]tk+1
, ..., [tk+p

]tk+p
}. ut
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4 LIN is in NC1

Let Gk = (Nk, T, Pk, S) be an arbitrary CFG in Dyck normal form, with Nk =
{S, [1, [2, ..., [k, ]1, ]2, ..., ]k}. Let ϕ : N∗k → (T ∪ {S})∗ be a variant of the homo-
morphism introduced in the proof of Theorem 3, defined as follows: ϕ(λ) = λ,
ϕ(S) = S, ϕ(N) = λ, for each rule of the form N → XY , N,X, Y ∈ Nk, N 6= S,
and ϕ(N) = t, for each rule of the form N → t, N ∈ Nk, N 6= S, t ∈ T . Next
we divide Nk into three main sets N (1), N (2), N (3) as follows

1. [i and ]i belong to N (1) if and only if ϕ([i) = t and ϕ(]i) = t′, t, t′ ∈ T ,
2. [i and ]i belong to N (2) if and only if ϕ([i) = t and ϕ(]i) = λ, or vice versa
ϕ([i) = λ and ϕ(]i) = t, t ∈ T ,

3. [i, ]i ∈ N (3) if and only if ϕ([i) = λ and ϕ(]i) = λ.

Certainly, Nk − {S} = N (1) ∪N (2) ∪N (3) and N (1) ∩N (2) ∩N (3) = ∅. The

set N (2) is further divided into N
(2)
l and N

(2)
r . The subset N

(2)
l contains those

pairs ([i, ]i) ∈ N (2) such that ϕ([i) 6= λ, while N
(2)
r contains those pairs ([i, ]i)

∈ N (2) such that ϕ(]i) 6= λ. We have N (2) = N
(2)
l ∪N (2)

r and N
(2)
l ∩N (2)

r = ∅.
For the sake of simplicity, for each two brackets [i and ]i belonging to X, X ∈
{N (1), N (2), N (3)}, we use the notation ([i, ]i) ∈ X. In this section we deal only
with regular and linear context-free languages, and grammars in right, left and
linear-Dyck normal form defined below. A linear CFG is denoted as LCFG.

Definition 7. A grammar Gk is in right-Dyck normal form if Gk is in Dyck

normal form and N (3) = N
(2)
r = ∅. A grammar Gk is in left-Dyck normal form

if Gk is in Dyck normal form and N (3) = N
(2)
l = ∅. A grammar Gk is in

linear-Dyck normal form if Gk is in Dyck normal form and N (3) = ∅.

Lemma 3. For each right-linear grammar G, there exits a grammar Gk in right-
Dyck normal form such that L(G) = L(Gk).

Proof. Each right-linear grammar G can be written in an equivalent standard
form by using only rules of the type X → λ, X → t, X → tY , t ∈ T , X, Y ∈ N .
Transforming G from standard form into Chomsky normal form, and then into
the Dyck normal form, we obtain a grammar Gk in right-Dyck normal form.
Since each standard, Chomsky, and Dyck normal form are weakly equivalent
with the initial grammar we obtain L(G) = L(Gk). ut

Lemma 4. For each left-linear grammar G, there exits a grammar Gk in left-
Dyck normal form such that L(G) = L(Gk).

Corollary 3. REG is equal with the family of languages generated by grammars
in right-Dyck normal form or in left-Dyck normal form.

Lemma 5. For each linear grammar G, there exits a grammar Gk in linear-
Dyck normal form such that L(G) = L(Gk).
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Proof. Each linear grammar G can be written in an equivalent standard form by
using only rules of the form X → λ, X → t, X → t1Y , X → Y t2, X → t1Y t2,
t, t1, t2 ∈ T , X, Y ∈ N . Transforming G from standard form, into Chomsky
normal form, and then into the Dyck normal form, we obtain a grammar Gk in
linear-Dyck normal form. Since each standard form for linear languages, Chom-
sky, and Dyck normal form are weakly equivalent we obtain L(G) = L(Gk). ut

Corollary 4. LIN is equal with the family of languages generated by grammars
in linear-Dyck normal form.

In what follows we consider more closely the structure of the derivation tree
of a LCFG in linear-Dyck normal form.

Let G be a LCFG and Gk = (Nk, T, Pk, S) be the linear-Dyck normal form

of G, with Nk = {S, [1, [2, ..., [k, ]1, ]2, ..., ]k}, such that both N
(2)
r and N

(2)
l

are non-empty sets. Let L(Gk) be the language generated by Gk. Each word
w = a1a2...an, of an arbitrary length n, belonging to L(Gk), has the property
that there exists an index nt, 1 ≤ nt ≤ n − 1, and a pair ([tj , ]tj) ∈ N (1), such
that [tj→ ant and ]tj → ant+1. Using the homomorphism ϕ, this is equivalent
with ϕ([tj) = ant and ϕ(]tj) = ant+1. For the position nt already “marked”, there
is no other position in w with the above property.

We call the index nt the core index of w, and antant+1 the core segment of
w. However, because linear languages are ambiguous, there may exist several
other “unique” positions inside w in which the core index can be reached. If we
develop the derivation tree of w, for a core index already “decided”, it may be
observed that the pair ([tj , ]

t
j) generating antant+1, is placed at the bottom of the

derivation tree of w. Each symbol in this tree is generated within two steps of

derivation (because the set N
(3)
l = ∅), therefore the height of the derivation tree

is n−1. Each level, excepting the last one, is composed either of a bracketed pair

from N
(2)
l or of a bracketed pair from N

(2)
r . The last level contains the bracketed

pair from N (1), i.e., the two symbols from w holding on the core segment. The
prefix of w, wpf = a1a2...ant−1 can be read from the left side of the derivation
tree, while the suffix of w, wsf = ant+2...an−1an can be read from the right side
of the derivation tree. The set of all prefixes and suffixes of w, of type wpf and
wsf , respectively, when w ∈ L(Gk), i.e., the languages

Lpf = {wpf |wpf = a1a2...ant−1, w ∈ L(Gk), nt is the core index of w}, and
Lsf = {wsf |wsf = ant+2...an−1an, w ∈ L(Gk), nt is the core index of w},

are regular. Furthermore, each of the left and right regular set, Lpf and Lsf , is
a “shuffle” of a finite number of left and right regular languages, respectively.
More precisely, each linear grammar in linear-Dyck normal form can be split into
a finite number of right and left linear grammars in right and left Dyck normal
form, respectively, such that Lpf is a “shuffle” of the finite number of languages
generated by right-linear grammars and Lsf is a “shuffle” of the finite number
of languages generated by left-linear grammars.

The idea is to use an indexing ATM, denoted as A, such that if w ∈ T ∗,
w = a1a2...an is a string of an arbitrary length (that we would like to have it in
L(Gk)), then A first guesses the core index nt. Then A guesses possible words
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belonging to the right-linear languages that are subwords of wpf = a1a2...ant−1,
and possible words belonging to the left-linear languages that are subwords of
wsf = ant+2...an−1an. For each guess that matches, A checks whether the so-
lution does not spoil the derivation tree, i.e., the concatenation of a1a2...ant−1,
antant+1, and ant+2...an−1an gives indeed a word belonging to the linear lan-
guage generated by Gk. More precisely, we check whether the shuffle of the
right-linear languages and the shuffle of the left-linear languages are well syn-
chronized. Because there may exist an infinite number of places inside wpf where
the right-linear languages shuffle, and also an infinite number of places inside
wsf where the left-linear languages shuffle, A must guess an infinite number of
integers that represents the length of each subword4.

A procedure that guesses an infinite number of arbitrarily large integers, and
checks the correctness of this guess, requires more than logarithmic time and
space (even if the integers are stored in binary, see Algorithm 1). In order to
overcome this impediment we define the dependency graph associated with a
LCFG in linear-Dyck normal form. Using the description of a directed graph
through regular expressions given in [6] we reduce the number of arbitrarily
large integers that A has to guess to a finite number. This makes it possible
the recognitions of linear languages by indexing ATMs in logarithmic time and
space (Algorithms 2, 3 and 4).

Recall that an indexing ATM is an alternating Turing machine that is allowed
to write any binary number on a special tape, called index tape. This number
is interpreted as an address of a location on the input tape. Having an integer i
written in binary on the index tape, A is able to read the input symbol placed
on the ith cell of the input tape. By using universal states to relate different
branches on the computation, we can effectively read an input string of length
n in O(log n) time.

We recall that for each linear grammar in linear-Dyck normal form Gk, the
derivation tree of a word w ∈ L(Gk) has only “one bottom” reached in a brack-
eted pair from N (1). Therefore, the trace-word tw,D associated with w and the
derivation D of w, contains only one nested segment of the form [tj ]tj , where ([tj ,

]tj) ∈ N (1). The image through ϕ of [tj ]tj is the core segment of w.
As explained above, A first guesses the position of the single bracketed pair

([tj , ]tj) ∈ N (1) in tw,D. Depending on this position, and on the rules of Gk, A
performs several guessing procedures in order to rebuild from the input word w,
the structure of tw,D, and thus the derivation tree of w. If no guessing procedure
leads to a possible trace-word associated with the input string, then w is rejected
as not belonging to L(Gk).

In the sequel, by Dl,r we denote the derivation of w that works as a rightmost

derivation each time a bracketed pair ([i, ]i) ∈ N (2)
r occurs in a sentential form,

i.e., first the rule that rewrites ]i is applied, and afterwards the rule that rewrites

[i, and as a leftmost derivation for each bracketed pair ([j , ]j) ∈ N (2)
l ∪N (1), i.e.,

first the rule that rewrites [j is applied, and afterwards the rule that rewrites

4 Note that A does not have to guess also the position of each subword inside w.
Knowing the length of each subword these positions can be computed.
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]j . The derivation tree of a word w ∈ L(Gk) does not depend on the derivation
order, thence a left-most derivation, or an arbitrary other derivation D of w,
including Dl,r, have the same derivation tree, that read in the depth-first order
gives a unique trace-word tw,D.

We denote by
/

N
(2)

r and
.

N
(2)

r the sets of all left-brackets [i and right-brackets

]i, respectively, such that ([i, ]i) ∈ N (2)
r . The aim is to build the finite number

of left-regular languages whose shuffle equals the language Lsf . This can be
performed by using the rules of the grammar Gk. More precisely, for each ([tjp ,

]tjp) ∈ N (1), and ([jq , ]jq ), ([jq′ , ]jq′ ) ∈ N
(2)
l , jq, jq′ not necessarily different, we

build, according to all possible derivations in Gk, four types of regular sets, i.e.,
sets of type L([jq ), L([tjp), L([jq [jq′ ), and L([jq [

t
jp

).

In the sets of type L([jq ) we collect all prefixes of all possible trace-words
from  Lk that are generated until the left bracket [jq occurs for the first time

in a sentential form, such that before [jq is derived, no left bracket from N
(2)
l

occurs within the derivation. All these prefixes are composed of only left-brackets

belonging to N
(2)
r . In the sets of type L([tjp) we collect all prefixes of possible

trace-words generated until the left bracket [tjp occurs in a sentential form, such

that before [jq is derived, no left bracket from N
(2)
l occurs within the derivation.

In the sets L([jq [jq′ ) we collect all possible subwords of trace-words from  Lk,

composed of only brackets belonging to
/

N
(2)

r generated between any two brackets
[jq and [jq′ . Finally, the sets L([jq [

t
jp

) gather all subwords of trace-words from

 Lk, composed of only brackets belonging to
/

N
(2)

r generated between any two
left-brackets [jq and [tjp during the generative process of L(Gk).

L([jq ) = {x|S ⇒(p) x1]jqy, [jq→ x1 ∈ P, x ∈ (
/

N
(2)

r )∗, x is the prefix of tw,D gene-

rated until the step p, p > 2, of Dl,r, y ∈ T ∗}∪{S|S ⇒(2)x1]jq , [jq→ x1∈ P},

L([tjp) ={x|S ⇒(2n−2) x1]tjpy, [
t
jp
→ x1, ]

t
jp
→ x2 ∈ P, x ∈ (

/

N
(2)

r )∗, x is a prefix of

tw,D generated until the step 2n − 2, n > 2, of tw,D, y ∈ T ∗} ∪ {S|S⇒(2)

x1]tjp , [
t
jp
→x1∈P},

L([jq [jq′ )={x|S ⇒
(p1) x1...xj ]jqy, S ⇒(p2) x1...xjxj+1]jq′ y

′, [jq→ xj , [jq′→ xj+1∈

P, x ∈ (
/

N
(2)

r )∗, x is the subword of tw,D generated between the steps p1 + 1
and p2−1 of Dl,r, y, y

′ ∈ T ∗}∪{λ|S ⇒(p1) x1...xj ]jqy, S ⇒(p1+2) x1...xjxj+1

]jq′ y
′, [jq→ xj , ]jq → [jq′ ]jq′ , [jq′→ xj+1 ∈ P, y, y′ ∈ T ∗},

L([jq [
t
jp

)={x|S ⇒(p)x1...xnt−1]jqy, S ⇒(2n−2)x1...xnt−1xnt ]
t
jp
y′, [jq→ xnt−1, [

t
jp
→

xnt , ]
t
jp
→ xnt+1 ∈ P, x ∈ (

/

N
(2)

r )∗, x is the subword of tw,D generated beween

the steps p+1 and 2n−2 of Dl,r, y, y
′ ∈ T ∗}∪{λ|S ⇒(2n−4) x1...xnt−1]jqy,

S ⇒(2n−2)x1...xnt−1xnt ]
t
jp
y′, [jq→ xnt−1, ]jq→ [jq′ ]jq′ , [jq′→ xnt∈ P, y, y′∈T ∗}.
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Let Ψr and ψr be the homomorphisms defined as Ψr : (
/

N
(2)

r )∗ → (
.

N
(2)

r )∗,

such that Ψr([i) = ]i, and ψr : (
.

N
(2)

r )∗ → T ∗, ψr(S) = λ, ψr(λ) = λ, ψr(]i) = t,

for each rule of the form ]i → t, ([i, ]i) ∈ N (2)
r , t ∈ T . Now consider LΨr r ([jq ),

LΨr r ([tjp), LΨr r ([jq [jq′ ), and LΨr r ([jq [tjp) the mirror image5 of the above sets, in

which each left bracket [i, such that ([i, ]i) ∈ N (2)
r , is switched into its pairwise ]i,

i.e., Ψr is applied first. Let Lψr ([jq ), Lψr ([tjp), Lψr ([jq [jq′ ), and Lψr ([jq [tjp) be the

image of the above ′LΨr r ′ sets through ψr. Since regular languages are closed un-
der reverse and homomorphism, LΨr r ([jq ), LΨr

r

([tjp), LΨr r ([jq [jq′ ), L
Ψr

r

([jq [
t
jp

),

Lψr ([jq ), Lψr ([tjp), Lψr ([jq [jq′ ), and Lψr ([jq [tjp) are regular.
With the above regular sets already built, we have all prerequisites needed to

explain the way in which a “primary” indexed ATM can “guess” linear languages
(see Algorithm 1). This is not yet a logarithmic solution of recognition of linear
languages, but supply an idea of how an ATM should be used and where the
strategy of using it must be improved in order to reach our “logarithmic” aims.
In parallel with the description of this very first algorithm we provide an explicit
labeling procedure of the computation tree associated with an ATM, with respect
to [1] and [3]. Let A be an indexing ATM composed of an input tape that stores
an input word, w ∈ T ∗ of length n, an index tape to guess input symbols, and one
work tape divided into four tracks, to record the positions of the input symbols
and several other values used during the computation. These numbers are stored
on the tracks of the work tape in binary. At the beginning of the computation
the tracks of the work tape are empty.

Algorithm 1 (The Primary Algorithm) Let w ∈ T ∗, w = a1a2...an, be an input
word of length n

Level 1 (Existential) In an existential state A guesses the length of w and
verifies the correctness of this guess, i.e., writes on the index tape n, and checks
whether the nth cell of the input tape contains a terminal symbol and the cell
(n+ 1) contains no symbol. The correct value of n is recorded in binary on the
first track of the work tape. This procedure requires O(log n) time and space. 4

Level 2 (Existential) Using existential states A branches all i between 1 and
n, and tries to localize the position of ([tj , ]tj)∈N (1) inside w, such that [tj→ ai,
and ]tj → ai+1 ∈ P . Denote by nt the core index i for which ai, and ai+1,

5 If s = s1s2...sn is an arbitrary string then the mirror image of s, denoted as sr,
is the reverse of s, i.e., sr = sn...s2s1. The mirror image of the above sets can be
also built directly during the derivation process in the same way we built the sets
L([jq ), L([tjp), L([jq [jq′ ), L([jq [tjp). This can be done, if instead of collecting brackets

from
/

N
(2)

r we collect brackets from
.

N
(2)

r . In the right-side of the nested segment [tj
]tj in tw,D, with ϕ([tj ]tj) = antant+1, the right-brackets are generated in the reverse

order they occur in the left side of [tj ]tj . We chose to collect left-brackets from N
(2)
r

in order to make the connection between brackets from the trace-word and brackets

from
.

N
(2)

r occurring in the dependency graph, further defined (Definition 8).
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1 ≤ i ≤ n − 1, have been guessed with this property. Once the core segment
antant+1, 1 ≤ nt ≤ n− 1, has been localized, the computation continues on that
existential branch with Level 3. At this level there may exist several existential
branches through which the computation can (correctly) continue. All these
branches are labeled by 1. If no two symbols ant , ant+1, with the above property
can be found, the input w is rejected. For each existential branch, holding on the
core segment antant+1, the value nt is stored in binary on the second track of the
work tape. Then A computes n−nt−1 and log(n−nt−1) space is allocated for
the third track. This allocation stays as a space-measure to control the limits of
computation, i.e., no positive integer greater than n− nt − 1, written in binary,
can be stored on this track. The out-degree of a node at this level is at most
n. The operation to convert the computation tree into a tree with out-degree 2
increases the height of the computation tree with log n. Therefore, the cost of
the computation at this level takes O(log n) time and space, too. 4

Level 3 Depending on the position of antant+1 in w we may have:

1) (Universal case) If nt = 1, then the trace-word tw,D, has the structure6:

tw,D =
[in−1

[in−2
... [i2 [tj1 ]tj1 ]i2 ... ]in−2

]in−1

| | ... | | | | ... | |
λ λ ... λ a1 = ant a2 = ant+1 a3 ... an−1 an

Consider wnt = a3a4...an−1an. In this case A checks whether the axiom S or
wnt belongs to the language Lψr ([tj1). Because Lψr ([tj1) is a regular language, the
membership problem is decidable in O(log n) time (in terms of the length of the
input string) by an ATM. If neither the axiom S nor wnt belongs to Lψr ([tj1),
then w is rejected on this branch of the computation tree.

2) (Universal case) If nt = n− 1, then the trace-word tw,D, is of the form:

tw,D =
[j1 ]j1 [j2 ]j2 ... [jn−2 ]jn−2 [tjn−1

]tjn−1

| | | | | | | |
a1 λ a2 λ ... an−2 λ an−1 = ant an = ant+1

Then A universally branches all i between 1 and n−1, and in parallel checks
whether the following conditions hold: 2.i) there exists [j1→ a1 ∈ P such that
S ∈ L([j1), i.e., S → [j1 ]j1 ∈ P ; 2.ii) for each i, 1 ≤ i ≤ n − 2, whether there
exist [ji→ ai ∈ P , [ji+1→ ai+1 ∈ P , and λ ∈ L([ji [ji+1); 2.iii) whether there
exist [jn−2

→ an−2 ∈ P , [tjn−1
→ an−1 ∈ P , and λ ∈ L([jn−2

[tjn−1
).

If for at least one i, 1 ≤ i ≤ n − 1, the above conditions do not hold w is
rejected (there exists at least one branch in an universal fork labeled by 0).

3) (Alternating from Universal to Existential) If 1 < nt < n−1 then tw,D is a
matched segment of the form listed below, in which sets of left-brackets [i1 ...[ik1

,
[ikj−1+1

...[ikj , 2 ≤ j ≤ nt, may be missing.

6 By vertical lines we emphasize the image through the homomorphism ϕ of each
bracket occurring in tw,D.
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tw,D =

[i1 ... [ik1
[j1 ]j1 [ik1+1...[ik2

[j2 ]j2 ...[jnt−1 ]jnt−1 [iknt−1+1
...

| ... | | | | ... | | | ... | | | ...
λ ... λ a1 λ λ ... λ a2 λ ... ant−1 λ λ ...

... [iknt [
t
jnt

]tjnt
]iknt ... ]iknt−1

... ]ik2
... ]ik1

... ]i1
... | | | | ... | ... | ... | ... |
... λ ant ant+1 ant+2 ...an−knt−1...−k1+1 ...an−k2−k1+1 ... an−k1+1 ... an

In this case, A existentially guesses nt natural numbers k1, k2, ..., knt−1, knt ,
0 ≤ ki ≤ n−nt−1, 1 ≤ i ≤ nt, such that k1 +k2 + ...+knt−1 +knt = n−nt−1,
and for each such an nt-tuple universally branch on all [ji left-brackets, and [tjnt ,

([ji ,]ji) ∈ N
(2)
l , ([tjnt ,]

t
jnt

) ∈ N (1), 1 ≤ i ≤ nt − 1, and let A to proceed further
as follows:

1) verify whether there exists a rule [j1→ a1 ∈ P , and for each such a rule
check whether the axiom S or the suffix of w, wn−k1+1,n = an−k1+1...an−1an
belongs to the regular set Lψr ([j1);

2) for 1 ≤ i ≤ nt − 1, check whether there exist two rules [ji→ ai ∈ P ,
and [ji+1

→ ai+1 ∈ P , and verify whether λ, or the substring wn−ksi+1
+1,n−ksi =

an−ksi+1
+1...an−ksi of w, belongs to the set Lψr ([ji [ji+1), where ksi+1 = k1 +k2 +

...+ ki+1 and ksi = k1 + k2 + ...+ ki.
3) for i = nt, check whether there exist two rules [jnt−1

→ ant−1 ∈ P
and [tjnt→ ant ∈ P , and verify whether λ, or the suffix wn−ksnt+1,n−ksnt−1

=

an−ksnt+1...an−ksnt−1
= ant+2...ant+knt+1 of w, belongs to the set Lψr ([jnt−1

[tjnt ),

where ksnt = k1 + k2 + ...+ knt and ksnt−1 = k1 + k2 + ...+ knt−1.
Note that for each step described above, A first searches existentially for

rules in the grammar Gk that “pump” in w terminal symbols. If there is no
solution for this search, i.e., all branches in this existential fork are labeled by
0, w is rejected. Otherwise, having the nt-tuple stored in the fourth track of the
ATM work tape, A universally checks, for each of the 1) 2) and 3) steps, whether
the guessed nt-tuple is a correct solution. Each guessed nt-tuple is taken by an
universal branch. Now it is easy to observe that the above method goes beyond
O(log n) time and space, because the number of all possible (existential) guesses
for all nt-tuples with nt = O(n), arises to O(nn). The operation to convert the
tree into a tree with (finite) out-degree 2 will increase the height, and thus the
alternating time, of the computation tree with O(nlog n). The space required to
record the nt-tuple is also O(nlog n). Therefore, this strategy is not suitable for
our approaches. However, this “primary” algorithm provides an idea of how an
indexing ATM, guessing linear languages, works. 4

�

In the sequel we focus on finding a suitable strategy for an indexing ATM,
such that based on the method explained in Algorithm 1, we can reduce the
computational resources ofA toO(log n) time and space. To accomplish this aim,
we introduce a structural framework that consists in a graphical representation
of a grammar in linear-Dyck normal form through a directed graph called the
dependency graph of the grammar.
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By making use of this graphical representation of a grammar in linear-Dyck
normal form the dimension of the tuples, of arbitrarily large positive integers,
that A has to guess can be substantially reduced to a finite number. This, sub-
stantially decreases the number of guessings performed by A from O(nn) to
O(nc), where c is a constant. In this way the height of the computation tree
associated with A becomes comparable with O(c·log n).

Definition 8. Let Gk = (Nk, T, Pk, S) be an arbitrary LCFG in linear-Dyck
normal form. The dependency graph of Gk, denoted as G, is a directed graph in
which vertices are labeled with variables from Nk, and for each rule X → [i ]i ∈
P , ([i, ]i) ∈ N

(2)
l , G contains a directed edge from X to ]i, and for each rule

X → [i ]i ∈ P , ([i, ]i) ∈ N (2)
r , G contains a directed edge from X to [i. If ([ti, ]ti)

∈ N (1) and X → [ti ]ti ∈ P , then G contains a directed edge from X to [ti, and
[ti is called a final vertex. The vertex labeled by the axiom is called the initial
vertex.

Let Gk = (Nk, T, Pk, S) be an arbitrary LCFG in linear-Dyck normal form,
and let G be the dependency graph associated with Gk. Next, we build the set
of all possible paths in G starting from the initial vertex to a final vertex. We
call such a path a terminal path. We refer to an edge or a path from v to v as a
(cycle) loop. We are interested only on those grammars for which G contains at
least one cycle. Otherwise, the language generated by Gk is finite.

The cycle rank of a graph is a measure of the loop complexity7 formally de-
fined and studied in [4], [6], and [9]. In [6] it is proved that from each two vertices
m and n belonging to a digraph of cycle rank k, there exists a regular expression
of star-height k that describes the set of paths from m to n. According to this
result the set of terminal paths in the dependency graph G can be characterized
by regular expressions of finite star-height.

If v1v2...vkv1 is a loop (cycle), where vi, 1 ≤ i ≤ k, are vertices in G, then
arbitrarily many repetitions of this loop in G is denoted as (v1v2...vk)�, where �
may be ∗ or + Kleene closures. A loop within a loop (or a loop of diamond-height
two) is encoded as (vj1 ...vjp(vi1 ...vik)�vjp+1 ...vjr )

�, where via 6= vib , vjc 6= vjd ,
a 6= b, c 6= d. An arbitrary loop of diamond-height m is called in this paper
multilevel loop. Since Nk is finite, i.e., the dependency graph is composed of a
finite number of vertices, there will be only a finite number of distinct loops in
a loop. Also, each terminal path will be composed of a finite number of distinct
loops, otherwise a multilevel loop is created. The “height” of the nested loops
can be at most equal with the cycle rank of the underlying dependency graph.
With these considerations we can divide the infinite set of terminal paths from
the initial vertex to a final vertex in G into a finite number of classes of terminal
paths. All paths belonging to the same class are characterized by the same regular
expression in terms of ∗ and +. Hence, there exists a finite number of regular
expressions based on concatenation, ∗ and + Kleene operations, that characterize

7 It is trivial to prove, by induction on the number of nodes, that the cycle rank of a
digraph, with a finite number of nodes, is finite.
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all classes of terminal paths in G. It is easy to observe that each regular expression
of a finite star-height can be described as a finite union of regular expressions in
terms of only + Kleene closure8. Therefore, by enlarging the number of regular
expressions readable from the dependency graph associated with a LCFG in
linear-Dyck normal form, without loss of generality we can assume to work only
with regular expressions in terms of +. Next we give an example that deals with
the dependency graph of a linear grammar and with regular expressions, in terms
of + Kleene closure, readable from this dependency graph.

Example 2 Let G4 = (N4, T, P4, S) be a LCFG in linear-Dyck normal form
such that P4 = {S → [1 ]1, [1→ [2 ]2, [1→ [3 ]3, ]2 → [1 ]1, ]3 → [2 ]2, ]3 →
[t4 ]t4, ]1 → a, [2→ b, [3→ c, [t4→ d, ]t4 → d}.

The dependency graph of G4 is the directed graph composed of the set V =
{S, [1, ]2, ]3, [t4} of vertices, and the set E = {S [1, [1 ]2, [1 ]3, ]2 [1, ]3 ]2, ]3 [t4} of
edges. The initial vertex is S and the final vertex is [t4. For this grammar G is char-
acterized by a single regular expression, i.e., < = S[1((]2 [1)∗(]3(]2 [1)+)∗)∗]3[t4.
More than one class of terminal paths, in terms of ∗, would exist for instance, if
G would be composed of two or more disjoint graphs connected with each other
only through the initial vertex S. Furthermore, < can be expressed as a finite
union of regular expressions in terms of +, as follows < = <1 ∪ <2 ∪ <3 ∪ <4,
where <1 = S[1]3[t4, <2 = S[1((]2 [1)+)+]3[t4, <3 = S[1((]3(]2 [1)+)+)+]3[t4, <4 =
S[1((]2 [1)+(]3(]2 [1)+)+)+]3[t4 ♣

The plus-height, i.e., the number of nested + occurring in the description
of a regular expression, can be defined analogous to the star-height of a regular
expression in [11].

Definition 9. Let Σ be a finite alphabet. The plus-height h(<) of a regular
expression < is defined recursively as follows:

1. h(λ) = h(∅) = h(a) = 0 for a ∈ Σ;
2. h(<1 ∪ <2) = h(<1<2) = max{h(<1), h(<2)}, and h(<+) = h(<) + 1.

From [11] we have also adopted the next definition of a regular expression in
string form, in terms of + Kleene closure.

Definition 10. The class SREG+(Σ) of regular expressions in string form over
a finite alphabet Σ, in terms of plus-height, is defined recursively as follows. For
any regular expression <,

1. if h(<) = 0, then < ∈ SREG+(Σ) iff < = w1 ∪ ...∪wm for some m ≥ 1, and
wi ∈ Σ∗, 1 ≤ i ≤ m;

2. if h(<) > 0, then < ∈ SREG+(Σ) iff < = <1 ∪ ... ∪ <m for some m ≥ 1,
<i ∈ SREG+(Σ), 1 ≤ i ≤ m, and there exists at least one j, 1 ≤ j ≤ m,
such that <j is of the form <j = wj1(<j1)+wj2(<j2)+...wjpj (<jpj )+wjpj+1 ,

pj ≥ 1, wjl ∈ Σ∗, 1 ≤ l ≤ pj + 1, and <jk ∈ SREG+(Σ), 1 ≤ k ≤ pj .
8 The union operator, that may occur inside a ∗ loop, can be eliminated by using the

relation (r1 ∪ r2)∗ = ((r1)∗(r2)∗)∗, where r1 and r2 are regular expressions.
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Since each regular expression based on ∗ Kleene operation can be expressed
as a finite union of regular expressions in terms of + Kleene operation, without
loss of generality, we assume that we can divide the set of terminal paths in G
into a finite number of classes described only by + Kleene operation.

Recall that
/

N
(2)

r is the set of all left-brackets [i, ([i, ]i) ∈ N (2)
r , and

.

N
(2)

r is the

set of all right-brackets ]i, such that ([i, ]i) ∈ N (2)
r . Analogously, we define

/

N
(2)

l

the set of all left-brackets [j , ([j , ]j) ∈ N (2)
l , and

.

N
(2)

l the set of all right-brackets

]j , such that ([j , ]j) ∈ N (2)
l . Our aim is to describe terminal paths in G, in terms

of plus-height loops induced only by elements from
.

N
(2)

l , i.e., nested plus-loops

that begin with a bracket9 from
.

N
(2)

l
10. This is always possible by “rotating”

a loop until it starts with a bracket from
.

N
(2)

l . This operation does not change
the regular language associated with the regular expression. It only enlarges the
length of the regular expression, as in Example 3.

Example 3 Let < = S([5[3[4(]1(]2[4)+[3[4)+)+t be a regular expression over the

set of brackets
.

N
(2)

l = {]1, ]2},
/

N
(2)

r = {[3, [4, [5}.
In terms of loops induced by elements from

.

N
(2)

l , < can be rewritten as
< = S[5[3[4((]1(]2[4)+[3[4)+[5[3[4)∗(]1(]2[4)+[3[4)+t. In terms of loops induced by

elements from
.

N
(2)

l and + Kleene operation < becomes < = <∗0 ∪ <+
0 , <∗0 =

S[5[3[4(]1(]2[4)+[3[4)+t, <+
0 = S[5[3[4((]1(]2[4)+[3[4)+[5[3[4)+(]1(]2[4)+[3[4)+t. ♣

Let RG be the set of all regular expressions, in terms of + Kleene operation,
readable from G. Let < be an arbitrary element of RG , and ℘ an arbitrary path
belonging to the class of terminal paths characterized by <. Comparing the
regular structure of < with the cyclicity structure of ℘, we observe that both <
and ℘ are composed of the same three main types of segments:

1. segments that do not contain any bracket from
.

N
(2)

l (but only left-brackets

from
/

N
(2)

r ),
2. “constant” segments that contain a finite number of distinct brackets from

.

N
(2)

l (and between them an arbitrary large number of left-brackets from
/

N
(2)

r ),
3. and one-level or multilevel loops (nested loops of different plus-heights) in-

duced by brackets from
.

N
(2)

l .

Depending on the type of the above segments composing < and ℘, we continue
to build, using the concatenation and + Kleene operations, several other more
complex regular sets similar to the sets ′Lψr ′.

9 We are not yet interested in the loops induced in G by elements from
/

N
(2)

r .
10 A similar procedure can be outlined if we consider terminal paths in terms of loops

induced only by elements from
/

N
(2)

r . In this case each routine should be symmetri-
cally changed in terms of brackets belonging to the sets N

(2)
r and N

(2)
l .
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The first case considered above has been discussed when we built the sets of
type ′Lψr ′. Case 1, considered below, deals with “constant” segments that do

not contain any loop induced only by elements from
.

N
(2)

l . Loops are investigated
according to their complexity, i.e., the plus-height of the loop, see Case 2. Each
terminal path belonging to a certain class, characterized by a certain regular
expression, will be a finite combination of “empty” segments in terms of brackets

from
.

N
(2)

l , “constant” segments and loops of “constant” length and different

plus-heights, induced by brackets from
.

N
(2)

l .
Before dealing with the above segments and loops readable from G, recall

that Ψr and ψr are homomorphisms defined as Ψr : (
/

N
(2)

r )∗→ (
.

N
(2)

r )∗, Ψr([i) =]i,

and ψr : (
.

N
(2)

r )∗ → T ∗, ψr(S) = λ, ψr(]i) = t, for each rule of the form ]i → t.

We further define Ψl and ψl as Ψl : (
.

N
(2)

l )∗→ (
/

N
(2)

l )∗, with Ψl(]j) = [j , and

ψl : (
/

N
(2)

l )∗ → T ∗, ψl(S) = λ, ψl([j) = t, for each rule of the form [j→ t.

Case 1 Let ]c1X1]c2X2...Xs−1]cs be an arbitrary “constant” segment occurring

in G, composed of a constant number of brackets from
.

N
(2)

l , such that each
segment Xi, 1 ≤ i ≤ s, s ≥ 2, is composed of an arbitrary number of brack-

ets from
/

N
(2)

r . For each such segment we build a pair of sets11 in which the
first element of the couple is [c1 [c2 ...[cs , and the second element is composed of
all words obtained by concatenating words belonging to previously built sets
of type L([jq [jq′ ). Formally, we have Lc([c1 ...[cs) = {([c1 ...[cs , `1`2...`s−1)|`i ∈
L([ci [ci+1), 1 ≤ i ≤ s− 1, s ≥ 2}.

If (x1, x2) is a pair of two strings, and X is an arbitrary set of such pairs,
then we denote by Xl the set composed of the first elements of pairs, and by
Xr the set composed of the second elements of pairs, i.e., if X = (Xl, Xr), then
Xl = {x1|(x1, x2) ∈ X}, and Xr = {x2|(x1, x2) ∈ X}.

Further on, we compute Lcψr ([c1 ...[cs) = {(x, y)|x = ψl([c1 [c2 ...[cs), y =
ψr((Ψr(`))

r), ` ∈ Lcr([c1 ...[cs)}.
√

Case 2 In order to study multilevel loops we first investigate the simplest loops

determined by brackets from
.

N
(2)

l , i.e., loops of plus-height one and two, and
make a generalization afterwards. In what follows, specific structures, especially

indexes, occurring inside languages generated by brackets from
.

N
(2)

l , are marked
by symbols ′ˇ′. Specific structures, characterizing languages generated by brack-

ets from
/

N
(2)

r , are marked by symbols ′ˆ′. Whenever it is known, the plus-height
of a regular expression is denoted as +i, meaning that the plus-height of that
expression is i. In general, instead of “plus-height” we use the notation +h̄. As-
sociated with each +h̄ there is an arbitrarily large positive integer, called the
value of +h̄, i.e., the number of times that loop is repeated. Upper indexes of
integer values are always enclosed into parenthesis.

11 To avoid any ambiguity, that may occur in the guessing and searching procedures
of A, by [c1 [c2 ...[cs occurring in the further notation L([c1 ...[cs) we denote the finite
enumeration of all brackets that occur between [c1 and [cs .
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Case 2. 1 (Loops of plus-height one induced by brackets from
.

N
(2)

l ) The sim-
plest loop of plus-height one is

(]
j
(1)
1

X
i
(1)
1

]
j
(1)
2

X
i
(1)
2

...X
i
(1)

q̌(1)−1

]
j
(1)

q̌(1)

X
i
(1)

q̌(1)

)+ (1)

where ]
j
(1)
p
∈
.

N
(2)

l , and X
i
(1)
p

is composed of brackets from
/

N
(2)

r , more precisely,

X
i
(1)
p
∈ L([

j
(1)
p

[
j
(1)
p+1

), 1 ≤ p ≤ q̌(1) − 1, X
i
(1)

q̌(1)

∈ L([
j
(1)

q̌(1)

[
j
(1)
1

).

Note that for each loop of plus-height greater than one, the concatenation of

brackets from
.

N
(2)

l (i.e., the segment ]
j
(1)
1

]
j
(1)
2

...]
j
(1)

q̌(1)

for the case of loop (1)) has

to be well synchronized with the segment composed of brackets from
/

N
(2)

r (i.e.,
the segment X

i
(1)
1

X
i
(1)
2

...X
i
(1)

q̌(1)

for the loop (1)). In less words, if ]
j
(1)
1

]
j
(1)
2

...]
j
(1)

q̌(1)

is repeated k times in (1) then so is X
i
(1)
1

X
i
(1)
2

...X
i
(1)

q̌(1)

.

Therefore, from now on instead of building “single” regular languages based
on the concatenation operation, we build “couples” of regular languages based
on concatenation and “synchronized” + Kleene operation.

For the loop (1) we build the set of all couples in which the first element of the

couple is the concatenation of sequences of brackets from
.

N
(2)

l , and the second

element of the couple is a concatenation of all brackets from
/

N
(2)

r , generated in G
between any two consecutive right-brackets from

.

N
(2)

l occurring in (1). Formally,
using the concatenation, homomorphism, and the reverse operations we compute

Lc
(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

) = {(x, y)|x = ψl(Ψl(]j(1)
1

...]
j
(1)

q̌(1)

)), y = ψr((Ψr(`i(1)
1

...`
i
(1)

q̌(1)

))r),

`
i
(1)
p
∈ L([

j
(1)
p

[
j
(1)
p+1

), 1 ≤ p ≤ q̌(1) − 1, `
i
(1)

q̌(1)

∈ L([
j
(1)

q̌(1)

[
j
(1)
1

)}.

Considering that the loop (1) is performed ǩ(1) times, we go further by build-
ing the + Kleene closure of this loop, i.e.,

Lc
+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

) = {(xǩ(1)

, yǩ
(1)

)|x ∈ Llc
(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

), y ∈ Lrc
(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

),

ǩ(1) ≥ 1}.
The set Lc

+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

) behaves rather as a context-free language than a

regular language12. However, separately considered the sets Llc
+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

)

12 If for each pair from Lc
+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

) the first element is concatenated with the

second element, i.e., we compute the language L̄
c
+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

)={xǩ
(1)

yǩ
(1)

|x ∈

Ll
c
(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

), y ∈ Lr
c
(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

), ǩ(1)≥1}, then L̄
c
+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

) is not regular.
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and Lrc
+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

) are regular (because regular languages are closed under

concatenation, homomorphism, reverse, and plus Kleene operations, and there

is no “synchronization” between them). Since Lc
+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

) is not regular,

A has only to guess ǩ(1) that characterizes the set Llc
+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

) and after-

words to check the synchronization. In order to do this we need also the structure
of the loops occurring in G between each two consecutive brackets [

j
(1)

q̌(1)

, [
j
(1)
p

and

[
j
(1)
p

, [
j
(1)
p+1

, 1 ≤ p ≤ q̌(1) − 1. More precisely, we need the entire structure of the

loop provided in (1). Note that, when we build the sets Lrc
+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

) we

concatenate all segments X
i
(1)
p

, 1 ≤ p ≤ q̌(1). Therefore, we are interested in the

structure of the whole segment X(1) = X
i
(1)
1

...X
i
(1)
q̌

and not in the structure of

each particular segment X
i
(1)
p

, 1 ≤ p ≤ q̌(1). At its turn X(1) can be expressed

in terms of loops containing only brackets from
/

N
(2)

r .
According to Definition 10, an “universal” structure of the segment X(1) can

be given by X(1) = c1O
+

1 c2O
+

2 ...cmiO
+

micmi+1, where ck, 1 ≤ k ≤ mi + 1, are
“constant” segments that do not contain any loop, and Oj are multilevel loops,
1 ≤ j ≤ mi. One of the structure, in terms of concatenation and + Kleene op-
erations, that Oj may have, is given by (2).

([
o
(m)
1

[
o
(m)
2

...([
o
(m−1)
1

[
o
(m−1)
2

...(...([
o
(2)
1

[
o
(2)
2

...[
o
(2)
p(2)

([
o
(1)
1

[
o
(1)
2

...[
o
(1)

q̂(1)

)+1

...[
o
(2)

q̂(2)

)+2 ...)+m−2 ...[
o
(m−1)

q̂(m−1)

)+m−1 ...[
o
(m)

q̂(m)

)+m . (2)

It can be seen now that an ATM A that tries to guess the positions of the
two subwords generated during the execution of the loop (1), placed at the left
and right side of the core segment antant+1, and synchronize them according
to each repetition of the loop (1), performed of ǩ(1) times, and each repetition

of a loop placed at the level q of (2), performed of k̂(q) times, where ǩ(1) and

k̂(q), 1 ≤ q ≤ m, are arbitrarily large, A has to guess ǩ(1)
∏m
q=1 k̂

(q) arbitrarily

large integers13 (that are values of plus-heights +q, 1 ≤ q ≤ m, from (2)). This
“naive” procedure makes it impossible to store all these numbers in only O(log
n) space. Next we show that we can do a well synchronization by guessing only
a finite number of arbitrarily large positive integers.

Let k̂(2) be the value of +2 in (2). At a very first glance for the first level A
should guess k̂(2) arbitrarily large integers greater than one, i.e., k̂

(1)
1 , k̂

(1)
2 , ...,

k̂
(1)

k̂(2)
. The sum of all these values is

k̂
(1)
1 + k̂

(1)
2 + ...+ k̂

(1)

k̂(2)
≥ k̂(2) ≥ 1. (3)

13 In order for A to guess these positions, A has to guess the length of these substrings.
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Therefore, guessing only one large integer, say ŝ(1), that covers the above sum,
such that ŝ(1) ≥ k̂(2), is enough to have a well synchronization of repetitions of
the loop placed at the first level according to repetitions of the loop placed at
the second level. Indeed, any arbitrarily large number ŝ(1), ŝ(1) ≥ k̂(2), can be
decomposed into a sum of form (3) in which all terms are greater than one. Going

further with upper levels, let k̂(3) be the arbitrarily large value of +3. Then for
the second level A should guess k̂(3) arbitrarily large integers greater than one,

i.e., k̂
(2)
1 , k̂

(2)
2 , ..., k̂

(2)

k̂(3)
. For the first level A should guess Σk̂(3)

i=1 k̂
(2)
i arbitrarily

large integers greater than one, i.e., k̂
(1)
1,1, k̂

(1)
2,1, ..., k̂

(1)

k̂
(2)
1 ,1

, k̂
(1)
1,2, k̂

(1)
2,2, ..., k̂

(1)

k̂
(2)
2 ,2

, ...,

k̂
(1)

1,k̂(3)
, k̂

(1)

2,k̂(3)
, ..., k̂

(1)

k̂
(2)

k̂(3)
,k̂(3)

. The sums of all integers guessed for the second and

the first level are, respectively,

k̂
(2)
1 + k̂

(2)
2 + ...+ k̂

(2)

k̂(3)
≥ k̂(3) ≥ 1, (4)

and Σk̂(3)

j=1(Σ
k̂

(2)
j

i=1 (k̂
(1)
i,j )) ≥ k̂(2)

1 + k̂
(2)
2 + ...+ k̂

(2)

k̂(3)
≥ k̂(3) ≥ 1. (5)

Guessing only two arbitrarily large integers ŝ(2) and ŝ(1) that cover the sum
(4) and (5), respectively, such that ŝ(1) ≥ ŝ(2) ≥ k̂(3) ≥ 1, is enough to have a
well synchronization of repetitions of the loops placed at the first level according
to repetitions of loops placed at the second and the third level. Indeed, any
arbitrarily large numbers ŝ(1) and ŝ(2), with ŝ(1) ≥ ŝ(2) ≥ k̂(3) ≥ 1, can be
decomposed14 into a sum of the form (4) or (5), without spoiling neither the
structure of the loop (2) nor the structure of the loop (1).

By induction on m, i.e., the +h̄ of loop (2), it can be proved that it is sufficient
for A to guess only m arbitrarily large integers ŝ(p), 1 ≤ p ≤ m, together with
ǩ(1), for the “mother” loop (1), such that ŝ(1) ≥ ŝ(2) ≥ ... ≥ ŝ(m) ≥ ǩ(1) ≥ 1 in
order to have a well synchronization of all loops composing (2) and (1).

So far we have considered only +h̄ nested loops, i.e., no concatenation of
two or more loops occur inside a particular level of a loop. However, in order to
make a correct synchronization of the shuffle of languages from the left side of
the core segment with the shuffle of languages from the right side of the core
segment of the input word, we must provide a full description of all loops at any
level of a +h̄ nested loop. In order to accomplish this aim we introduce a tree
representation of any arbitrary +h̄ regular expression in string form.

Let <̂m be an arbitrary regular expression in string form of +m over a finite
alphabet Σ. According to Definition 10 this can be described as follows

14 Inequalities (4) and (5) assures that the decomposition of ŝ(1) and ŝ(2) into terms
greater than one is possible. Correct decompositions are guaranted by a membership
checking of the string, generated by the corresponding loop, into regular sets of type

′L
c
+(1)

ψ

l
′ and ′L

c
+(1)

ψ
r

′, built for the loop (1), and in general of type ′L
c
+(m)

ψ

l
′ and

′L
c
+(m)

ψ
r

′, built for loops of +m, m ≥ 1, (see Case 2.2) executed during the Algorithms
2, 3, and 4. All these regular sets are built on the base of only + Kleene closures.
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<̂m = w
(1)
1 (O1)+m1w

(1)
2 (O2)+m2 ...w

(1)

p
(1)
1

(O
p

(1)
1

)
+m

p
(1)
1 w

(1)

p
(1)
1 +1

(6)

in which each w
(1)
j ∈ Σ∗, contains no loops, 1 ≤ j ≤ p(1)

1 + 1, and each (Oi)
+mi

is a loop of plus-height mi, 1 ≤ i ≤ p
(1)
1 , m = max{m1, ...,mp

(1)
1

}. According to

the recursive Definition 10, each Oi, 1 ≤ i ≤ p(1)
1 , can be further described as

Oi = w
(2)
i,1 (Oi,1)+hi,1w

(2)
i,2 (Oi,2)+hi,2 ...w

(2)

i,p
(2)
i

(O
i,p

(2)
i

)
+h

i,p
(2)
i w

(2)

i,p
(2)
i

+1

where hi,j is the +h̄ of the loop Oi,j , 1 ≤ j ≤ p
(2)
i , hi,j ≤ mi − 1, 1 ≤ i ≤ p

(1)
1 .

Next, each Oi,j , 1 ≤ i ≤ p(1)
1 , 1 ≤ j ≤ p(2)

i , is defined as

Oi,j = w
(3)
i,j,1(Oi,j,1)+hi,j,1w

(3)
i,j,2(Oi,j,2)+hi,j,2 ...w

(3)

i,j,p
(3)
j

(O
i,j,p

(3)
j

)
+h

i,j,p
(3)
j w

(3)

i,j,p
(3)
j

+1

where hi,j,k is the +h̄ of the loop Oi,j,k, 1 ≤ k ≤ p
(3)
j , hi,j,k ≤ hi,j ≤ mi − 2,

1 ≤ j ≤ p
(2)
i , 1 ≤ i ≤ p

(1)
1 . The recursion continues until the last step, when no

more loops can be defined, i.e., the recursion ends up with loops of the form

Oi1,i2,...,imi−1
= w

(mi)
i1,i2,...,imi−1,1

(Oi1,i2,...,imi−1,1)
+hi1,i2,...,imi−1,1w

(mi)
i1,i2,...,imi−1,2

...w
(mi)

i1,...,imi−1,p
(mi)

imi−1

(O
i1,...,imi−1,p

(mi)

imi−1

)

+h
i1,...,imi−1,p

(mi)

imi−1 w
(mi)

i1,...,imi−1,p
(mi)

imi−1
+1

where hi1,i2,...,imi ≤ 1, 1 ≤ ij ≤ p(j)
ij−1

, 2 ≤ j ≤ mi, 1 ≤ i1 ≤ p(1)
1 , and

Oi1,i2,...,imi = w
(mi+1)
i1,i2,...,imi ,1

Oi1,i2,...,imi ,1w
(mi+1)
i1,i2,...,imi ,2

Oi1,i2,...,imi ,2

...w
(mi+1)

i1,i2,...,imi ,p
(mi+1)

imi

O
i1,i2,...,imi ,p

(mi+1)

imi

w
(mi+1)

i1,i2,...,imi ,p
(mi+1)

imi
+1

where each Oi1,i2,...,imi ,imi+1 , 1 ≤ imi+1 ≤ p(mi+1)
imi

contains no loop.

To each loop Oi1,i2,...,ij , 1 ≤ ij ≤ p
(j)
ij−1

, 2 ≤ j ≤ mi − 1, 1 ≤ i1 ≤ p
(1)
1 , we

associate three parameters, the name of the loop, encoded into the lower indexes,
i.e., i1, i2, ..., ij , the height of the loop, i.e., hi1,i2,...,ij , hi1,i2,...,ij ≤ hi1,i2,...,ij−1

≤
mi1−(j−1), and the length of the loop defined as lg(Oi1,i2,...,ij ) = |w(j+1)

i1,i2,...,ij ,1
|+

...+ |w(j+1)

i1,i2,...,ij ,p
(j+1)
ij

+1
|.

The regular expression <̂m is characterized by <̂m as name, +m as +h̄, and

lg(<̂m) = |w(1)
1 |+...+|w

(1)

p
(1)
1 +1
| as length. Loops that cancel the above recursion15,

i.e., Oi1,...,imi , 1 ≤ imi ≤ p
(mi)
imi−1

, are characterized by the name of the loop, i.e.,

i1, ..., imi , the height of the loop, i.e., hi1,...,imi = 1, and the length of the loop

15 These loops correspond to the loop of type ([
o
(1)
1

[
o
(1)
2

...[
o
(1)

q̂(1)

)+1 from (2).
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defined as lg(Oi1,...,imi ) = |w(mi+1)
i1,...,imi ,1

|+ |Oi1,...,imi ,1|+ ...+ |O
i1,...,imi ,p

(mi+1)

imi

|+

|w(mi+1)

i1,...,imi ,p
(imi

+1)

imi
+1
|.

To each regular expression <̂m we associate a finite tree T̂ (<̂m) = (V, E),

called the coverability tree of <̂m. Nodes in this tree correspond to loops Oi1,...,ij ,

1 ≤ ij ≤ p(j)
ij−1

, 1 ≤ j ≤ mi−1. Each node is indexed by the name of the loop, i.e.,
i1, ..., ij , and it is labeled by the parameters that characterize that loop, i.e., the
height hi1,...,ij , and length lg(Oi1,...,ij ). If Oi1,...,ij is an arbitrary loop composed

of the loops Oi1,...,ij ,ij+1 , 1 ≤ ij+1 ≤ p(j+1)
ij

, then there exists an edge in T̂ (<̂m)
from the node indexed by i1, ..., ij to each node indexed by i1, ..., ij , ij+1.

Definition 11. Let <̂m be an arbitrary regular expression defined in (6). The

coverability tree associated with <̂m is a rooted tree T̂ (<̂m) = (V, E), in which
the set of vertices V, and the set of edges E , are defined as follows:

1. the root r0 is indexed by <̂m and it is labeled by the parameters that char-
acterize <̂m, i.e., the +h̄ = +m and the length lg(<̂m), i.e., r0 = v<̂m(+m,

lg(<̂m)). The root r0 has p
(1)
1 children. The ith child of the root corresponds

to the ith loop Oi, 1 ≤ i ≤ p
(1)
1 . The node associated with the ith loop is

indexed by i and labeled by the parameters that characterize Oi, i.e., (+mi ,

lg(Oi)), 1 ≤ i ≤ p(1)
1 . Therefore, there is an edge in E from v<̂m(+m, lg(<̂m))

to each vi(+mi , lg(Oi)), 1 ≤ i ≤ p(1)
1 .

2. if vi1,...,ij (+hi1,...,ij
, lg(Oi1,...,ij )) is the node associated with the jth loop

Oi1,...,ij , 1 ≤ ij ≤ p
(j)
ij−1

, 2 ≤ j ≤ mi − 1, then vi1,...,ij has p
(j+1)
ij

or-

dered children. The child ij+1 of the node vi1,...,ij , 1 ≤ ij+1 ≤ p
(j+1)
ij

,
2 ≤ j ≤ mi − 1, corresponds to the loop Oi1,...,ij+1

. This node is encoded by
vi1,...,ij+1(+hi1,...,ij+1

, lg(Oi1,...,ij+1)) and a new edge from vi1,...,ij to vi1,...,ij+1

is added in E .
3. the leaves are nodes vi1,...,imi (+hi1,...,imi

= +1, lg(Oi1,...,imi )) associated with

loops of the form Oi1,...,imi , 1 ≤ imi ≤ p
(mi)
imi−1

.

Example 4 The loop <̂4 = S[1((]2 [1)+(]3(]2 [1)+)+)+]3[t4 of Example 2, has the

coverability tree T̂ (<̂4) = (V, E), in which V is composed of the nodes v<̂4
(+3, 4),

v1(+3, 0) associated with the loop ((]2 [1)+(]3(]2 [1)+)+)+, v1,1(+1, 2) associated
with the loop (]2 [1)+, v1,2(+2, 1) associated with the loop (]3(]2 [1)+)+, and
v1,2,1(+1, 2) associated with the loop (]2 [1)+. The set of edge is E = {v<̂4

v1, v1v1,1,
v1v1,2, v1,2v1,2,1}. ♣

According to Definition 11, the loop Oj described in (2) is characterized
by a linear tree in which the root of the tree corresponding to the loop Oj , is
characterized by (+m, 0). The child of the root is the loop placed at the mth

level, denoted as O+m
j . It is characterized by the parameters (+m, q̂(m)). The

child of the loop O+m
j is the loop placed at the level m− 1, denoted as O

+m−1

j ,
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and it is characterized by (+m−1, q̂(m−1)). The very last child is the loop O+2
j

characterized by the parameters (+2, q̂(2)). It has as child (that is also the leaf
of the tree) the loop O+1

j characterized by (+1, q̂(1)).

Consider now the situation, where A guesses the +h̄ value, ǩ(1), of the loop
(1). Then the length of the subword generated by the loop (1) at the left side of

the core segment antant+1 is q̌
(1)
s ǩ(1). In order to guess the subword generated by

the loop (1) at the right side of the core segment antant+1, as explained before,
A has to guess m arbitrarily large integers ŝ(p), 1 ≤ p ≤ m. Recall that each ŝ(p),
1 ≤ p ≤ m, stands for the sum of all +h̄ values of loops placed at the level p of
(2). On the other hand if the value of the plus-height of the loop (1) is ǩ(1) then
the loop (2) must be “repeated” of at least ǩ(1) times. According to the above
explanations the positive integers guessed so far must fulfill the inequalities

ŝ(1) ≥ ŝ(2) ≥ ... ≥ ŝ(m−1) ≥ ŝ(m) ≥ ǩ(1) ≥ 1. (7)

The length of the subword generated by (1) in the right side of antant+1 is given
by q̂(m)ŝ(m) + q̂(m−1)ŝ(m−1) + ...+ q̂(1)ŝ(1), in which q̂(p), 1 ≤ p ≤ m, stands for
the length of the loop placed at the level p of (2).

In this moment we have a general view of the structure of a loop through the
graphical representation provided by the coverability tree associated with that
loop. The loop (2) is a particular case for which the associated tree has a linear
representation. It can be considered as a proper branch (a path from the root to a
leaf) of a most general tree as introduced in Definition 11. Using this framework
we can easily generalize condition (7) for the whole tree, i.e., conditions of type
(7) must be imposed along all branches (paths from the root to each leaf) of the
coverability tree. Consider a loop having a tree representation given by all paths
from the root v0 to each leaf, of the form:

℘̂1 = v̂0, v̂1,1, v̂1,2, ..., v̂1,f̂1
,

℘̂2 = v̂0, v̂2,1, v̂2,2, ..., v̂2,f̂2
, ...,

℘̂m̂ = v̂0, v̂m̂,1, v̂m̂,2, ..., v̂m̂,f̂m̂ ,

 (8)

where each node v̂i,j is characterized by the parameters (+j , l̂i,j), in which j is

the +h̄ (that gives the ranking place in the path) and l̂i,j is the length of the

loop characterized by v̂i,j . For the whole tree A must guess at most f̂1 + ...+ f̂m̂
arbitrarily large numbers of integers16, i.e., for each node v̂i,j , A guesses an

arbitrarily large integer ŝi,j , 1 ≤ i ≤ m̂, 1 ≤ j ≤ f̂i, and for each path checks
whether the next inequalities hold:

ŝi,f̂i ≥ ŝi,f̂i−1 ≥ ... ≥ ŝi,2 ≥ ŝi,1 ≥ ŝ0 ≥ ǩ(1) ≥ 1 (9)

where ŝ0 is the arbitrarily large value associated with the root.
Notice that, for common branches A guesses single values. If for instance, two

paths fork in a node v̂i1 , i.e., ℘̂1 = v̂0, v̂1, ..., v̂i1 , v̂i1,2 , ..., v̂i1,f̂1
, ℘̂2 = v̂0, v̂1, ..., v̂i1 ,

16 The plus-height of the loop described by (8) is given by m = max{f̂1, ..., f̂m̂}.
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v̂i2,2 , ..., v̂i2,f̂2
, then up to the bifurcation point v̂i1 , A guesses a single value for

each node, even if there are two different paths. The same restriction is imposed
when we compute the length of the string generated by the loop. If a node
belongs to different paths, when we compute the length of the string generated
by the entire loop, the arbitrarily large integer guessed for that node, multiplied
by the length of the loop associated with that node, is added into the final
length only once. Thus, a loop represented by a tree composed of two paths
℘1 and ℘2 generates a string of length `℘1,℘2 = (ŝ0 l̂0 + ŝ1 l̂1 + ... + ŝi1 l̂i1) +

(ŝi1,2 l̂i1,2 + ... + ŝi1,f̂1 l̂i1,f̂1
) + (ŝi2,2 l̂i2,2 + ... + ŝi2,f̂2 l̂i2,f̂2

). A sum operation with

this restriction, i.e., each term is added only once, is denoted as
⊕

. We use this
notation whenever there is no possibility to make distinction between different
nodes in a coverability tree associated with a loop. With these considerations
the length of the string generated by loop (2) is computed by

m⊕
i=1

(ŝ0 l̂0 + ŝi,1 l̂i,1 + ŝi,2 l̂i,2 + ...+ ŝi,f̂i l̂i,f̂i). (10)

Reconsider the loop (1) for which the segment X(1) = X
i
(1)
1

X
i
(1)
2

...X
i
(1)

q̌(1)

has

an “universal” representation through a tree composed of all paths from the root
v0 to each leaf, i.e., ℘̂1, ℘̂2,..., ℘̂m̂, for which the conditions (9) hold, then for
the loop (1) we have already built the regular languages

Llc
+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

) = {xǩ(1) |x ∈ Llc
(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

), ǩ(1) ≥ 1}, and

Lrc
+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

) = {yk̂(1) |y ∈ Lrc
(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

), k̂(1) ≥ 1}, where

Lc
(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

) = {(x, y)|x = ψl(Ψl(]j(1)
1

...]
j
(1)

q̌(1)

)), y = ψr((Ψr(`i(1)
1

...`
i
(1)

q̌(1)

))r),

`
i
(1)
p
∈ L([

j
(1)
p

[
j
(1)
p+1

), 1 ≤ p ≤ q̌(1) − 1, `
i
(1)

q̌(1)

∈ L([
j
(1)

q̌(1)

[
j
(1)
1

)}.

Consider now the particular case of a LCFG in linear-Dyck normal form for
which the dependency graph G has only one class of terminal paths represented
by a regular expression that starts with S (the axiom), ends with t (a terminal
node), and in between is composed of a loop of type (1). Let T̂ be the coverability
tree associated with the segment X(1), described by terminal paths given in (8),
with the conditions (9) upon its nodes. With the above information recorded,
by using constant space, Algorithm 1 can be improved as follows.

Algorithm 2 Let w ∈ T ∗ be an input word of length n of the form a1a2...an.
First A existentially proceeds similar as in Level 1 and Level 2 of Algorithm
1. Then, A existentially guesses an arbitrarily large integer ǩ(1) and at most
f̂1 + ...+ f̂m̂ arbitrarily large numbers of positive integers, i.e., for each node v̂0

and v̂i,j from (8), A guesses arbitrarily large integers, ŝ0 and ŝi,j , 1 ≤ i ≤ m,

1 ≤ j ≤ f̂i, and for each path checks whether the inequalities (9) hold. Then,
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1. A computes `l = q̌(1)ǩ(1), checks whether nt − 1 = `l, and whether the
prefix of length `l of w, i.e., a1...a`l = a1...ant−1 belongs to the regular set

Llc
+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

);

2. A computes `r =
⊕m

i=1(ŝ0 l̂0 + ŝi,1 l̂i,1 + ŝi,2 l̂i,2 + ...+ ŝi,f̂i l̂i,f̂i), checks whether
n−nt− 1 = `r, and whether the suffix of length `r of w, i.e., an−`r+1...an =

ant+2...an belongs to the regular set Lrc
+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

). �

Since f̂1+...+f̂m̂ is finite (being bounded above by m·k, where m is the finite
+h̄ of loop (1) and k is the maximum number of different loops occurring at any
level), there will be O(ns) existential branches corresponding to the values of

all plus-heights interfering in loop (1), where s = O(f̂1 + ... + f̂m̂). Therefore,
the computation tree associated with A in this case can be converted into a
binary tree of height at most O(slog n). Furthermore, all operations performed
during Algorithm 2 (check out inequalities of type (9), product or sum of a finite
number of O(log n) binary numbers) are functions belonging to NC1.

Algorithm 2 is correct, in the sense that it accepts only words belonging to the
language generated by a LCFG in linear-Dyck normal form, characterized by a
dependency graph G composed of only one class of terminal paths represented by
a regular expression that starts with S (the axiom), ends with t (a terminal node)
such that the pair [tj ]tj generates the core segment antant+1, and in between is

composed of a loop of type (1) whose coverability tree T̂ is described in (8).

Indeed, for a well synchronization of a word in Llc
+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

) with a word

in Lrc
+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

), it is enough to check whether knowing that the first loop

is performed of ǩ(1) times, all loops inside the “mother” loop (1) are performed of
at least ǩ(1) times, too, i.e., to check the inequalities (9). The other inequalities
between proper values associated with nodes in (8) concern well synchronization

of loops induced only by brackets from
/

N
(2)

r .

A main question arises concerning theO(f̂1+...+f̂m̂) arbitrarily large integers
that A in Algorithm 2, needs to guess for a correct solution of the membership
problem. Why does not A guess only the core index nt, and checks whether

the prefix of w, wpf = a1...ant−1 belongs to Llc
+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

), and the suffix

wsf = ant+2...an belongs to Lrc
+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

)? Can the above strategy be a

correct solution? The answer is, of course, No. First, because even if we have a

positive answer for the membership searching of wpf ∈ Llc
+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

) and

wsf ∈ Llc
+(1)

ψ ([
j
(1)
1

...[
j
(1)

q̌(1)

), when we concatenate wpfantant+1wsf , we may accept

one wpf that is generated of infinitely ǩ(1) many times by the loop (1) and one
wsf that, inside (1), is generated of only of a finite number of times. Which is
clearly not correct. Therefore, a synchronization at the level of the ”mother”
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loop (1) must be checked. On the other hand a correct synchronization of all
loops in (2) according to repetitions of loop (1) can be done only if we know all

values ŝ0 and ŝi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ f̂i, associated with the nodes v̂0 and v̂i,j ,

1 ≤ i ≤ m, 1 ≤ j ≤ f̂i, in (8). This observation is valid for any kind of multilevel

loop induced by brackets from
.

N
(2)

l . The above strategy described at the level

of a loop of plus-height one, induced by brackets from
.

N
(2)

l stands as a basis of

an “universal” loop induced by brackets from
.

N
(2)

l , case considered below. √

Case 2. 2 (Loops of plus-height greater than one induced by brackets from
.

N
(2)

l ) A multilevel loop, similar to the loop (2), induced by brackets from
.

N
(2)

l ,
looks like (11)

(]
j
(m)
1

X
i
(m)
1

]
j
(m)
2

X
i
(m)
2

...(]
j
(m−1)
1

X
i
(m−1)
1

]
j
(m−1)
2

X
i
(m−1)
2

...(...(]
j
(1)
1

X
i
(1)
1

...]
j
(1)

q̌(1)

X
i
(1)

q̌(1)

)+1

...)+m−2 ...X
i
(m−1)

q̌(m−1)−1

]
j
(m−1)

q̌(m−1)

X
i
(m−1)

q̌(m−1)

)+m−1 ...X
i
(m)

q̌(m)−1

]
j
(m)

q̌(m)

X
i
(m)

q̌(m)

)+m (11)

where ]
j
(l)
p
∈
.

N
(2)

l , and X
i
(l)
p

is composed of brackets from
/

N
(2)

r , more precisely,

X
i
(l)
p
∈ L([

j
(l)
p

[
j
(l)
p+1

), 1 ≤ p ≤ q̌(l)−1,X
i
(l)

q̌(l)

∈ L([
j
(l)

q̌(l)

[
j
(l)
1

), 1 ≤ p ≤ q̌(l), 1 ≤ l ≤ m.

If X(l) = X
i
(l)
1

X
i
(l)
2

...X
i
(l)

q̌(l)

, 1 ≤ l ≤ m, then X(l) is a regular expression of type

(6).
The coverability tree associated with X(l), defined in Definition 11, is denoted

by T̂ (X(l)) = (VX(l) , EX(l)). The coverability tree associated with the regular
expression (11), denoted by <̌, is a finite tree Ť (<̌) = (V, E), in which V = V<̌
∪ VX(1) ∪ ... ∪ VX(m) , where V<̌ = {v(0), v(1), ..., v(m)}, each node v(l)(+l, q̌

(l))
corresponds to the loop placed at the level l, 1 ≤ l ≤ m, composed of only brack-

ets from
.

N
(2)

l . The set of edges is E = E <̌ ∪ EX(1) ∪ ... ∪ EX(m) , where E <̌ =
{v(1)vX(1) , v(1)v(2), v(2)vX(2) , v(2)v(3), ..., v(m−1)vX(m−1) , v(m−1)v(m), v(m)vX(m)}, in

which vX(l) , 1 ≤ l ≤ m, is the root of T̂ (X(l)) = (VX(l) , EX(l)).
Let ǩm be the value of the +m, šl, 1 ≤ l ≤ m − 1, be the sum of all +l’s

values, 1 ≤ l ≤ m− 1, and ŝl, 1 ≤ l ≤ m, be the sum of all +l values of the root
of each tree T̂ (X(l)). Then the conditions (7) become

š(1) ≥ š(2) ≥ ... ≥ š(m−1) ≥ ǩ(m) ≥ 1,
ŝ(l) ≥ š(l), 1 ≤ l ≤ m− 1,

ŝ(m) ≥ ǩ(m).

 (12)

Furthermore, each ŝ(l), 1 ≤ l ≤ m, corresponds to the root vX(l) , and satisfies
proper inequalities of type (9) corresponding to the coverability tree T̂ (X(l)).
The length of the string generated by (11) on the left side of the core index is

ǩ(m)q̌(m) + š(m−1)q̌(m−1) + ...+ š(2)q̌(2) + š(1)q̌(1). (13)
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The length of the string generated by the loop (11) on the right side of the core
index is a sum of type (10) considered over all trees T̂ (X(l)).

To have a generalization of loop (11) let us consider <̌m an arbitrary regular
expression in string form of +m over a finite alphabet Σ. According to Definition
10, this can be described as

<̌m = ( ]
j
(m)
1

X
i
(m)
1

... ]
j
(m)

l1

X
i
(m)

l1

(O1)+m1 ]
j
(m)

l1+1

X
i
(m)

l1+1

... ]
j
(m)

l1+l2

X
i
(m)

l1+l2

(O2)+m2 ...

]
j
(m)

l1+...+l
p(m)−1

+1

X
i
(m)

l1+...+l
p(m)−1

+1

...]
j
(m)

l1+...+l
p(m)

X
i
(m)

l1+...+l
p(m)

(Op(m))
+m

p(m)

]
j
(m)

l1+...+l
p(m)+1

X
i
(m)

l1+...+l
p(m)+1

...]
j
(m)

l1+...+l
p(m)+1

X
i
(m)

l1+...+l
p(m)+1

)+m (14)

in which eachO
+mi
i is a loop of height +mi , 1 ≤ i ≤ p(m),m = max{m1, ...,mp(m)},

and has a similar structure as loop <̌m. Analogously as for the loop (6), we can re-

cursively continue to define each loop O
+mi
i , 1 ≤ i ≤ p(m), until loops of +h̄ = 0.

For each loop O
+mi
i we consider the segment X

+mi
i = X

i
(mi)

1

...X
i
(mi)

l1+...+l
p(mi)+1

,

1 ≤ i ≤ p(m). For <̌m the above segment becomes X+m = X
i
(m)
1

...X
i
(m)

l1+...+l
p(m)+1

.

Each X
+mi
i is composed of only brackets from

/

N
(2)

r . It may be an empty or con-
stant segment (a loop of +h̄ = 0) or it may have a structure similar to the

loop (6). To each such a segment we associate a coverability tree T̂ (X
+mi
i ),

1 ≤ i ≤ p(m), as defined in Definition 11. To each loop of form (14) we can also
associate a coverability tree, denoted Ť (<̌m), similar to the coverability tree de-
fined in Definition 11, or to the coverability tree associated with the loop (11).

The parameters that characterize each node associated with each loop O
+mi
i in

Ť , are the same as in the case of Definition 11, i.e., +h̄ = +mi and the length

l1 + ...+ lp(mi) , i.e., the number of brackets from
.

N
(2)

l that composes O
+mi
i .

Since each segment X
+mi
i contains no bracket from

.

N
(2)

l , the coverability

tree17 associated with X
+mi
i , i.e., T̂ (X

+mi
i ), does not contain any (coverability)

subtree of type Ť . Thus, each subtree of type T̂ can be considered as a “leaf”
subtree of Ť . Now we can state conditions of type (9) and (10) for a general loop
of type (14). The loop (14) has a tree representation given by all paths from the
root v0 to each leaf of the form

℘̌1 = v̌0, v̌1,1, v̌1,2, ..., v̌1,f̌1−1, t̂1,f̌1
,

℘̌2 = v̌0, v̌2,1, v̌2,2, ..., v̌2,f̌2−1, t̂2,f̌2
, ...,

℘̌m̌ = v̌0, v̌m̌,1, v̌m̌,2, ..., v̌m̌,f̌m̌−1, t̂m̌,f̌m̌ ,

 (15)

in which each node v̌i,j , 1 ≤ j ≤ f̌i − 1, 1 ≤ i ≤ m̌, is characterized by the
parameters (+j , ľi,j), where j is the +h̄ of the loop associated with the node
v̌i,j (that gives the ranking place in that path) and ľi,j is the length of the loop.

17 If a segment of type X
+mi
i is empty, then T̂ (X

+mi
i ) will be an empty tree, too.
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Each node t̂i,f̌i , 1 ≤ i ≤ m̌, stands for the root of a coverability tree of type T̂f̌i ,
which may also be an empty tree.

For the whole tree Ť (<̌m), Amust guess at most18 f̌1+...+f̌m̌−m̌ arbitrarily
large numbers of integers corresponding to nodes19 of type v̌i,j , i.e., for each such
node A guesses an arbitrarily large integer ši,j , 1 ≤ j ≤ f̌i − 1, 1 ≤ i ≤ m̌. For
each path ℘̌i, 1 ≤ i ≤ m̌, A checks whether the next inequalities hold:

ŝi,f̌i ≥ ši,f̌i−1 ≥ ... ≥ ši,2 ≥ ši,1 ≥ š0 ≥ 1 (16)

where š0 is the arbitrarily large value associated with the root v̌0, and ŝi,f̌i ,
1 ≤ i ≤ m̌, is the arbitrarily large value associated with the root of each “leaf”
tree of type T̂f̌i . The length of the string generated by the loop of type (14) on
the left side of the core index, is given by

m̌⊕
i=1

(š0 ľ0 + ši,1 ľi,1 + ši,2 ľi,2 + ...+ ši,f̌i−1 ľi,f̌i−1). (17)

Each tree of type T̂f̌i , rooted by t̂i,f̌i , 1 ≤ i ≤ m̌, has a description in terms
of terminal paths given by a system of type (8) of the form

℘̂f̌i1 = t̂i,f̌i , v̂
f̌i
1,1, v̂

f̌i
1,2, ..., v̂

f̌i

1,f̂
(f̌i)

1

,

℘̂f̌i2 = t̂i,f̌i , v̂
f̌i
2,1, v̂

f̌i
2,2, ..., v̂

f̌i

2,f̂
(f̌i)

2

, ...,

℘̂f̌im̂i = t̂i,f̌i , v̂
f̌i
m̂i,1

, v̂f̌im̂i,2, ..., v̂
f̌i

m̂i,f̂
(f̌i)

m̂i

.

 (18)

Therefore, for each “leaf” subtree of type T̂f̌i
20, characterized by (18), A

must guess other f̂
(f̌i)
1 + ...+ f̂

(f̌i)
m̂i

, 1 ≤ i ≤ m̌, finite numbers, of arbitrarily large
integers that satisfy the conditions:

ŝ
j,f̂

(f̌i)

j

f̌i
≥ ŝ

j,f̂
(f̌i)

j
−1

f̌i
≥ ... ≥ ŝj,2

f̌i
≥ ŝj,1

f̌i
≥ ŝi,f̌i (19)

where ŝi,f̌i is the arbitrarily large value associated with the root t̂i,f̌i , 1 ≤ j ≤ m̂i,
and 1 ≤ i ≤ m̌. The length of the string generated by the loop (14) at the right
side of the the core index, is given by

m̌⊕
i=1

m̂i⊕
j=1

(ŝi,f̌i · l̂i,f̌i + ŝj,1
f̌i
· l̂j,1
f̌i

+ ŝj,2
f̌i
· l̂j,2
f̌i

+ ...+ ŝ
j,f̂

(f̌i)

j

f̌i
· l̂
j,f̂

(f̌i)

j

f̌i
). (20)

For each loop of type (14) we build the following left and right regular languages

18 For each common node, belonging to different paths, A guesses only a single value.
19 The plus-height of (14), without considering the plus-height of each X

+mi
i segment,

is m = max{f̌1, ..., f̌m̌}.
20 The height of T̂f̌i is equal with the plus-height of the segment X

+mi
i , i.e., +mi =

max{f̂ (f̌i)
1 , ..., f̂

(f̌i)
m̂i
}, 1 ≤ i ≤ m̌.
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Llc
+(m)

ψ (<̌m) = ψl(Ψl(ηλl(<̌m))) and Lrc
+(m)

ψ (<̌m) = ψr((Ψr(ηλr (<̌m)))r))

where ηλl , ηλr , ψl, ψr, Ψl, and Ψr are homomorphisms defined as

ηλl : (
.

N
(2)

l ∪
/

N
(2)

r ∪{S})∗ → (
.

N
(2)

l )∗, ηλl(S) = λ, ηλl([i) = λ, ηλl(]j) = ]j , for ([i,

]i) ∈ N (2)
r and ([j , ]j) ∈ N (2)

l ,

ηλr : (
.

N
(2)

l ∪
/

N
(2)

r ∪{S})∗ → (
/

N
(2)

r )∗, ηλr (S) = λ, ηλr (]j) = λ, ηλr ([i) = [i, for ([i,

]i) ∈ N (2)
r and ([j , ]j) ∈ N (2)

l ;

Ψl : (
.

N
(2)

l )∗→ (
/

N
(2)

l )∗, with Ψl(]j) = [j , and Ψr : (
/

N
(2)

r )∗→ (
.

N
(2)

r )∗, Ψr([i) = ]i;

ψl : (
/

N
(2)

l )∗ → T ∗, ψl([j) = t, for each rule of the form [j→ t, and

ψr : (
.

N
(2)

r )∗ → T ∗, ψr(]i) = t, for each rule of the form ]i → t.

Consider now the particular case of a LCFG in linear-Dyck normal form for
which the dependency graph G has only one class of terminal paths represented
by a regular expression that starts with S (the axiom), ends with t (a termi-
nal node), and in between is composed of a loop of type (14). Let Ť be the
coverability tree described by terminal paths given in (15) and (18), with the
conditions (16) and (19) upon its nodes. Having the above information recorded,
by using constant space, on the work tape of A, Algorithm 2 can be generalized
as follows.

Algorithm 3 Let w ∈ T ∗ be an input word of length n of the form a1a2...an.
First A existentially proceeds similar as in Level 1 and Level 2 in Algorithm 1.
Then, A existentially guesses at most f̌1 + ...+ f̌m̌− m̌ arbitrarily large numbers
of integers corresponding to the sum of plus-height values associated with nodes

in the coverability tree Ť (<̌m) described by (15), and at most
∑m̌
i=1(f̂

(f̌i)
1 + ...+

f̂
(f̌i)
m̂i

) arbitrarily large integers corresponding to the sum of plus-height values

associated with nodes in each “leaf” coverability tree of type T̂ described by
(18). Then A computes

1. `l =
⊕m̌

i=1(š0 ľ0+ ši,1 ľi,1+ ši,2 ľi,2+...+ ši,f̌i−1 ľi,f̌i−1), checks whether nt−1 =
`l, and whether the prefix of length `l of w, i.e., a1...a`l = a1...ant−1 belongs

to the regular set Llc
+(m)

ψ (<̌m);

2. `r =
⊕m̌

i=1

⊕m̂i
j=1(ŝi,f̌i · l̂i,f̌i + ŝj,1

f̌i
· l̂j,1
f̌i

+ ŝj,2
f̌i
· l̂j,2
f̌i

+ ... + ŝ
j,f̂

(f̌i)

j

f̌i
· l̂
j,f̂

(f̌i)

j

f̌i
),

checks whether n−nt−1 = `r, and whether the suffix of length `r of w, i.e.,

an−`r+1...an = ant+2...an belongs to the regular Lrc
+(m)

ψ (<̌m). �

Notice that, since both sums f̌1 + ...+ f̌m̌−m̌ and
∑m̌
i=1(f̂

(f̌i)
1 + ...+ f̂

(f̌i)
m̂i

) are
finite, there will always be O(ns1+s2) existential branches corresponding to the
values of all plus-heights interfering in loop (14), where s1 = O(f̌1 +...+ f̌m̌−m̌),

and s2 = O(
∑m̌
i=1(f̂

(f̌i)
1 + ...+ f̂

(f̌i)
mi )). Therefore, the computation tree associated

with A can be converted into a binary tree of height at most O((s1 + s2)log n).√
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The observations concerning the correctness of Algorithm 3 are the same as for
Algorithm 2. The procedure described in Algorithm 3 is universal concerning

the manner we deal with multilevel loops induced by brackets from
.

N
(2)

l . Now
we are ready to prove the main result.

√

Theorem 4. Each language L ∈ LIN can be recognized by an indexing ATM
in O(log n) time and space.

Proof. Let G = (N,T, P, S) be an arbitrary LCFG, and Gk = (Nk, T, Pk, S) be
the linear-Dyck normal form of G, with Nk = {S, [1, [2, ..., [k, ]1, ]2, ..., ]k}. Let
L(Gk) be the language generated by Gk, and G the dependency graph of Gk.
Without loss of generality we assume that G does not contain rules of the from
S → t, t ∈ T . Otherwise, by using a similar procedure as described in Theorem
3, the sets Nk and Pk are enlarged to Nk+p and Pk+p (defined in Theorem 3),
respectively. Then it is trivial to check whether words of length one belong to
the language generated by the new grammar Gk+p.

Let A be an indexing ATM composed of an input tape that stores an input
word, w ∈ T ∗ of an arbitrary length n, an index tape to guess input symbols,
and one working tape divided into four tracks, used to record the positions
of the input symbols and several other values used during the computation.
These numbers are stored on the work tapes in binary. At the beginning of the
computation the tracks of the work tape are empty.

Briefly, A first guesses the core index. Then depending on the structure of
G, A performs several guessing and checking procedures for each “constant”

segment or multilevel loop induced by brackets from
.

N
(2)

l , similar to Algorithm
3. Denote by P the set of all classes of terminal paths, in terms of + multilevel

loops induced by brackets from
.

N
(2)

l , found in the dependency graph of Gk. As
explained, with each element of P we associate a regular expression in terms of
+ Kleene operation. Denote the set of all regular expressions, in string form,
readable from G by RG . Then the cardinality of P and RG are equal and finite,
i.e., |P| = |RG |.

Algorithm 4 (The General Algorithm) Let w ∈ T ∗, w = a1a2...an, be an input
word of length n stored on the input tape.

Level 1 (Existential) In an existential state A guesses the length of w and
verifies the correctness of this guess, as in Level 1 of Algorithm 1. The correct
value of n is recorded in binary on the first track of the work tape. This procedure
requires O(log n) time and space. 4

Level 2 (Existential) Using existential states A branches all i between 1 and
n, and tries to localize the position of the core index, i.e., the index nt such that
there exists ([tj , ]tj) ∈ N (1) with [tj→ ant , and ]tj → ant+1 ∈ Pk. Once the core
segment antant+1, 1 ≤ nt ≤ n − 1, is localized, the computation continues on
that existential branch with Level 3. The value nt is stored in binary on the
second track of the work tape. Then A computes n− nt − 1 and log(n− nt − 1)
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space is allocated for the third track. This allocation is used to control the limits
of computation, i.e., no positive integer greater than n−nt−1, written in binary,
can be stored on this track. As explained in Level 2 of Algorithm 1, the cost of
the computation at this level is of O(log n) time and space, too. 4

Level 3 (Existential1 | Existential2 | Universal1)

Let |RG | be the cardinality ofRG . Recall that each element inRG , is uniquely
associated with a single class of terminal paths in P. Then A spawns |RG |
= |P| existential1 branches, each branch holding on the “structure” of one of
the regular expression in RG . With respect to Definition 10, and our bracketed
considerations, a general element < ∈ RG , can be of the form

< = Sz1c1z2o
+
1 z3c2z4o

+
2 ...z2ξ<−1cξ<z2ξ<o

+
ξ<
z2ξ<+1cξ<+1t.

In this structure, each segment zα, 1 ≤ α ≤ 2ξ< + 1, contains only brackets

from
/

N
(2)

r , “organized” either into constant segments, or into multilevel + loops.
The segments cβ , 1 ≤ β ≤ ξ< + 1, are “constant” segments in terms of brackets

from
.

N
(2)

l studied at Case 1, and o+
δ , 1 ≤ δ ≤ ξ<, are “universal” loops studied

at Case 2.

Each segment cβ , 1 ≤ β ≤ ξ<+1, is of the form cβ = ]
c
(β)
1

X
(β)
1 ...]

c
(β)
sβ−1

X
(β)
sβ−1]

c
(β)
sβ

,

in which each X
(β)
i , 1 ≤ i ≤ sβ − 1, are segments induced by brackets from

/

N
(2)

r . Let ]
cβ
l and ]

cβ
r be the leftmost and rightmost right-brackets from cβ , i.e.,

]
cβ
l = ]

c
(β)
1

and ]
cβ
r = ]

c
(β)
sβ

. Subwords, placed at the right-side of the core segment

antant+1, generated by brackets from
.

N
(2)

r , such that their pairwise from
/

N
(2)

r ,
occur in the dependency graph G, inside any “empty” or “constant” segment zα,
1 ≤ α ≤ 2ξ<+1, or cβ , 1 ≤ β ≤ ξ<+1, are words belonging to regular languages

(already built in Case 1) of type ′Lψr ′ and Lcψr ([
cβ
l ...[

cβ
r ), 1 ≤ β ≤ ξ< + 1.

Each o+
δ segment, 1 ≤ δ ≤ ξ<, denotes an one-level or multilevel loop, de-

termined by brackets from
.

N
(2)

l . Let us consider ]oδl and ]oδr , the leftmost and
rightmost brackets from o+

δ , respectively. Subwords, placed at the right-side of

the core segment antant+1, generated by brackets from
/

N
(2)

r occurring in the loop

o+
δ , 1 ≤ δ ≤ ξ<, are words belonging to regular languages of type Lrc

+(m)

ψ (o+
δ )

(already built in Case 2.2). Subwords, placed at the left-side of the core segment

antant+1, generated by brackets from
.

N
(2)

l occurring in the loop o+
δ , 1 ≤ δ ≤ ξ<,

are words belonging to regular languages of type Llc
+(m)

ψ (o+
δ ).

For each existential1 branch, holding on a regular expression of type <, A
proceeds as follows.

For the combination of “empty” and “constant” segments in terms of brackets

from
.

N
(2)

l , occurring in <, A existentially2 guesses 3ξ< + 3 positive integers k̇1,
..., k̇2ξ<+1, k̄1, ..., k̄ξ<+1, and kt, where each k̇α, 1 ≤ α ≤ 2ξ<+ 1, stands for the
length of zα, and each k̄β , 1 ≤ β ≤ ξ<+ 1, stands for the length of all sequences

of segments composed of brackets from
/

N
(2)

r , generated during the execution of
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cβ , i.e., k̄β = |X(β)
1 ...X

(β)
sβ−1|. The last value kt stands for the number of brackets

from
/

N
(2)

r generated between the rightmost bracket from cξ<+1 and t, the label
of the final vertex from the considered terminal path.

For each loop o+
δ , 1 ≤ δ ≤ ξ<, as explained in Algorithm 3, A existentially2

guesses at most f̌
(δ)
1 + ... + f̌

(δ)

m̌(δ) − m̌(δ), and at most f̂
(f̌

(δ)
i

)
1 + ... + f̂

(f̌
(δ)
i

)

m̂
(δ)
i

, 1 ≤

i ≤ m̌(δ), arbitrarily large numbers of integers corresponding to “accumulative

sums” associated with nodes of type v̌δi,j , 1 ≤ j ≤ f̌
(δ)
i , 1 ≤ i ≤ m̌(δ), defining

trees of type Ť δ(o+
δ ) in (15), and with nodes of type v̂

f̌
(δ)
i
i,j , 1 ≤ j ≤ f̂

(f̌
(δ)
i

)

m̂
(δ)
i

,

1 ≤ i ≤ m̂
(δ)
i , defining “leaf” trees of type T̂ δ

f̌i
in (18), respectively. For each

path ℘̌δi , 1 ≤ i ≤ m̌(δ), from (15) A checks whether inequalities of types (16)
hold, and computes a sum of type (17)

`
(δ)
l =

m̌(δ)⊕
i=1

(š0
δ ľ

(δ)
0 + ši,1δ ľ

(δ)
i,1 + ši,2δ ľ

(δ)
i,2 + ...+ ši,f̌i−1

δ ľ
(δ)

i,f̌i−1
). (21)

For each path ℘̂
f̌

(δ)
i
i , 1 ≤ i ≤ m̂

(δ)
i , from (18) A checks whether inequalities of

types (19) hold, and computes a sum of type (20). More precisely, A computes

`(δ)r =

m̌(δ)⊕
i=1

m̂
(δ)
i⊕

j=1

(ŝi,f̌
(δ)
i · l̂i,f̌

(δ)
i + ŝj,1

f̌
(δ)
i

· l̂j,1
f̌

(δ)
i

+ ŝj,2
f̌

(δ)
i

· l̂j,2
f̌

(δ)
i

+ ...+ ŝ
j,f̂

f̌
(δ)
i
j

f̌
(δ)
i

· l̂
j,f̂

f̌
(δ)
i
j

f̌
(δ)
i

). (22)

Each 5ξ<+3-tuple of positive and arbitrarily large integers guessed within the

existential2 branch, i.e., k̇α, 1 ≤ α ≤ 2ξ<+1, k̄β , 1 ≤ β ≤ ξ<+1, kt, `
(δ)
l and `

(δ)
r ,

1 ≤ δ ≤ ξ<, the last two δ-tuples computed with respect to (21) and (22), can be
stored, checked, and computed into the fourth track of the alternating machine.
Each of them must satisfy the conditions 0 ≤ k̇α ≤ n− nt − 1, 1 ≤ α ≤ 2ξ< + 1,

0 ≤ k̄β ≤ n − nt − 1, 1 ≤ β ≤ ξ< + 1, 0 ≤ kt ≤ n − nt − 1, 0 ≤ `
(δ)
l ≤ nt − 1,

0 ≤ `
(δ)
r ≤ n − nt − 1, 1 ≤ δ ≤ ξ<,

∑2ξ<+1

i=1 k̇i +
∑ξ<+1
i=1 k̄i +

∑ξ<
i=1 `

(i)
r + kt =

n− nt − 1, and
∑ξ<
i=1(`

(i)
l + si) + sξ<+1 = nt − 1.

Since we deal with operations that concern a finite number of arbitrarily
large integers of O(log n) bits, all the procedures to store and check inequalities
of type (16) and (19), or compute sums of type (21) and (22), are elementary
functions belonging to NC1. Therefore, the time and space needed to check the
above inequalities, and to compute in binary the sums described above, are not
more than O(log n) (using for instance the third track of a length log(n−nt−1)
as a space-clock). Furthermore, due to the finite dimension of the tuples, of
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arbitrarily large positive integers, A has to guess, the height of the computation
tree associated with A is still of O(log n).

↑
z1

a1...as1︸ ︷︷ ︸
c1

↑
z2

as1+1...as1+`
(1)

l︸ ︷︷ ︸
o1

...↑
z2i−1

a∑i−1

h=1
(sh+`

(h)

l
)+1

...a∑i−1

h=1
(sh+`

(h)

l
)+si︸ ︷︷ ︸

ci

↑
z2i

a∑i−1

h=1
(sh+`

(h)

l
)+si+1

...a∑i

h=1
(sh+`

(h)

l
)︸ ︷︷ ︸

oi

... ↑
z2ξ<−1

a∑ξ<−1

h=1
(sh+`

(h)

l
)+1

...a∑ξ<−1

h=1
(sh+`

(h)

l
)+sξ<︸ ︷︷ ︸

cξ<

↑
z2ξ<

a∑ξ<−1

h=1
(sh+`

(h)

l
)+sξ<

+1
...a∑ξ<

h=1
(sh+`

(h)

l
)︸ ︷︷ ︸

oξ<

↑
z2ξ<+1

a∑ξ<
h=1

(sh+`
(h)

l
)+1

...a∑ξ<
h=1

(sh+`
(h)

l
)+sξ<+1︸ ︷︷ ︸

cξ<+1

κ↑t a∑ξ<
h=1

(sh+`
(h)

l
)+sξ<+1+1︸ ︷︷ ︸

=ant

ant+1

a
n−
∑ξ<

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2ξ<+1−k̄ξ<+1−kt+1

...a
n−
∑ξ<

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2ξ<+1−k̄ξ<+1︸ ︷︷ ︸

κt = ant+2...ant+kt+1
a
n−

∑ξ<
h=1

(k̇2h−1+k̇2h+k̄h+`
(h)
r )−k̇2ξ<+1−k̄ξ<+1+1

...a
n−

∑ξ<
h=1

(k̇2h−1+k̇2h+k̄h+`
(h)
r )−k̇2ξ<+1︸ ︷︷ ︸

cξ<+1

a
n−

∑ξ<
h=1

(k̇2h−1+k̇2h+k̄h+`
(h)
r )−k̇2ξ<+1+1

...a
n−

∑ξ<
h=1

(k̇2h−1+k̇2h+k̄h+`
(h)
r )︸ ︷︷ ︸

z2ξ<+1

a
n−

∑ξ<
h=1

(k̇2h−1+k̇2h+k̄h+`
(h)
r )+1

...a
n−

∑ξ<−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2ξ<−1−k̄ξ<

−k̇2ξ<︸ ︷︷ ︸
oξ<

a
n−

∑ξ<−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2ξ<−1−k̄ξ<

−k̇2ξ<
+1
...a

n−
∑ξ<−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2ξ<−1−k̄ξ<︸ ︷︷ ︸

z2ξ<

a
n−

∑ξ<−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2ξ<−1−k̄ξ<

+1
...a

n−
∑ξ<−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2ξ<−1︸ ︷︷ ︸

cξ<

a
n−

∑ξ<−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2ξ<−1+1

...a
n−

∑ξ<−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )︸ ︷︷ ︸

z2ξ<−1

...a
n−

∑i

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )+1

...a
n−

∑i−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2i−1−k̇2i−k̄i︸ ︷︷ ︸

oi
a
n−

∑i−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2i−1−k̇2i−k̄i+1

...a
n−

∑i−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2i−1−k̄i︸ ︷︷ ︸

z2i
a
n−

∑i−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2i−1−k̄i+1

...a
n−

∑i−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2i−1︸ ︷︷ ︸

ci
a
n−

∑i−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2i−1+1

...a
n−

∑i−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )︸ ︷︷ ︸

z2i−1

a
n−k̇1−k̄1−k̇2−`

(1)
r +1

...an−k̇1−k̄1−k̇2︸ ︷︷ ︸
o1

an−k̇1−k̄1−k̇2+1...an−k̇1−k̄1︸ ︷︷ ︸
z2

an−k̇1−k̄1+1...an−k̇1︸ ︷︷ ︸
c1

an−k̇1+1...an︸ ︷︷ ︸
z1

Segments marked by the same color and the same index, are subwords generated within the same

partition in G, i.e., loops, “empty”, and “constant” segments in terms of elements from
.

N
(2)

l and
/

N
(2)

r . They are universally branched and checked according to items 1, 2, and 3. Figure 1.
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For each existential2 branch holding on an 5ξ< + 3-tuple, A universally1

branches substrings of the input string corresponding to the ci, and oi segments

(generated by brackets from
/

N
(2)

l ) placed at the left-side of the core segment
antant+1 with substrings of the input string corresponding to the segments z2i−1,

ci, z2i, oi, 1 ≤ i ≤ ξ<+ 1, (generated by brackets from
.

N
(2)

r ) placed at the right-
side of the core segment as emphasized in Figure 1. Each universal branch checks
whether the guessed integer, corresponding to the type of the enclosed segment,
can indeed be the length of a substring placed at the left or right side of the core
segment. More precisely, in parallel, for each i, 1 ≤ i ≤ ξ< + 1, A universally1

proceeds with the checking procedures described in 1), 2), and 3):

1) For i = 1, A checks whether

– there exists [c1l → a1 ∈ Pk and whether S or the suffix of w of length k̇1,
an−k̇1+1...an−1an belongs to Lψr ([c1l ),

– there exists [c1l → a1 ∈ Pk, [c1r → as1 ∈ Pk, and (a1...as1 , an−k̇1−k̄1+1...an−k̇1
)

∈ Lcψr ([c1l ...[
c1
r ),

– there exists [c1r → as1 ∈ Pk, [o1

l → as1+1 ∈ Pk, and whether λ or the subword

of w of length k̇2, an−k̇1−k̄1−k̇2+1...an−k̇1−k̄1
belongs to Lψr ([c1r [o1

l ),

– there exists [o1

l → as1+1 ∈ Pk, [o1
r → a

s1+`
(1)

l

∈ Pk, as1+1...as1+`
(1)

l

∈ Lcψrl ([o1

l [o1
r )

and a
n−k̇1−k̄1−k̇2−`(1)

r +1
...an−k̇1−k̄1−k̇2

∈ Lcψrr ([o1

l [o1
r ).

2) For each i, 2 ≤ i ≤ ξ< , A checks whether

– there exist [
oi−1
r → a∑i−1

h=1
(sh+`

(h)

l
)
∈Pk, [cil→ a∑i−1

h=1
(sh+`

(h)

l
)+1
∈Pk, and whether

λ or the subword of w of length k̇2i−1, a
n−
∑i−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2i−1+1

...

a
n−
∑i−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )

belongs to Lψr ([oi−1
r [cil ),

– there exist [cil → a∑i−1

h=1
(sh+`

(h)

l
)+1
∈ Pk, and [cir → a∑i−1

h=1
(sh+`

(h)

l
)+si
∈ Pk,

a∑i−1

h=1
(sh+`

(h)

l
)+1

...a∑i−1

h=1
(sh+`

(h)

l
)+si
∈ Lcψrl ([cil ...[

ci
r ), and a subword of length

k̄i, an−
∑i−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2i−1−k̄i+1

...a
n−

∑i−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2i−1

∈ Lcψrr ([cil ...[
ci
r ),

– there exist [
csi
r → a∑i−1

h=1
(sh+`

(h)

l
)+si
∈Pk, [oil → a∑i−1

h=1
(sh+`

(h)

l
)+si+1

∈Pk, and

whether λ or the subword of w, a
n−

∑i−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2i−1−k̄i−k̇2i+1

...a
n−

∑i−1

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2i−1−k̄i

∈ Lψr ([cir [oil ),
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– there exist [oil → a∑i−1

h=1
(sh+`

(h)

l
)+si+1

∈ Pk, [oir → a∑i−1

h=1
(sh+`

(h)

l
)+si+`

(i)

l

∈ Pk,

a
n−
∑i

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )+1

...a
n−
∑i

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )+`

(i)
r
∈ Lψrr ([oil [oir ),

and a∑i−1

h=1
(sh+`

(h)

l
)+si+1

...a∑i

h=1
(sh+`

(h)

l
)
∈ Lψrl ([oil [oir ).

3) For i = ξ< + 1, A checks whether

– there exist [
oξ<
r → a∑ξ<

h=1
(sh+`

(h)

l
)
∈Pk, [

cξ<+1

l → a∑ξ<
h=1

(sh+`
(h)

l
)+1
∈Pk, and

whether λ or the subword of length k̇2ξ<+1 of w, i.e.,

a
n−

∑ξ<
h=1

(k̇2h−1+k̇2h+k̄h+`
(h)
r )−k̇2ξ<+1+1

...a
n−

∑ξ<
h=1

(k̇2h+1+k̇2h+k̄h+`
(h)
r )

belongs

to Lψr ([
oξ<
r [

cξ<+1

l ),

– there exist [
cξ<+1

l → a∑ξ<
h=1

(sh+`
(h)

l
)+1
∈Pk, [

cξ<+1

r → a∑ξ<
h=1

(sh+`
(h)

l
)+sξ<+1

∈Pk,

such that a∑ξ<
h=1

(sh+`
(h)

l
)+1

...a∑ξ<
h=1

(sh+`
(h)

l
)+sξ<+1

∈ Lcψrl ([
cξ<+1

l [
cξ<+1

r ) and

a
n−
∑ξ<

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2ξ<+1−k̄ξ<+1+1

...a
n−
∑ξ<

h=1
(k̇2h−1+k̇2h+k̄h+`

(h)
r )−k̇2ξ<+1

∈ Lcψrr ([
cξ<+1

l [
cξ<+1

r ),

– there exist [
cξ<+1

r → a∑ξ<
h=1

(sh+ `
(h)

l
)+sξ<+1

∈Pk, where a∑ξ<
h=1

(sh+`
(h)

l
)+sξ<+1

=

ant−1, [tjnt→ ant ∈ Pk, and a
n−

∑ξ<
h=1

(k̇2h−1+k̇2h+k̄h+`
(h)
r )−k̇2ξ<+1−k̄ξ<+1−kt+1

...a
n−

∑ξ<
h=1

(k̇2h−1+k̇2h+k̄h+`
(h)
r )−k̇2ξ<+1−k̄ξ<+1

= ant+2...ant+kt+1

The input w ∈ T ∗ is accepted as belonging to L(Gk), if at least one existential
branch from the first existential fork is labeled by 1, which is actually ’decided’
at the end of the computation. This means that all universal branches from the
last universal fork are labeled by 1, i.e., the above conditions 1), 2), and 3) hold.
Going up in the computation tree, there exists at least one 5ξ< + 3-tuple, that
satisfies the condition 1), 2), and 3), i.e., there exists at least one branch in the
second existential fork labeled by 1. This implies that there exists at least one
existential branch in the first existential fork holding on a regular expression, or
a path in the dependency graph of the grammar Gk that generates w. 4

�
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5 Conclusions

In this paper we have presented a new normal form for CFGs, called Dyck nor-
mal form, and a characterization of CFLs in terms of Dyck languages. Based on
these two main results we have developed a “scenario” of an indexing alternat-
ing Turing machine that recognizes linear context-free languages in logarithmic
time and space. Hence, linear languages are a proper subclass of NC1 class. Ac-
cording to results from Sudborough [16] and [17], this implies the equality of L
(deterministic log-space) and NL (non-deterministic log-space).

The presentation of the solution we have proposed for the log-space problem
is very detailed, and follows, step by step, our progresses, in thinking and dealing
with this problem, reached during the elaboration of this implementation.
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