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INVITED TALKS

Semiparametric Models in Survival Analysis and
Quantile Regression

Probal Chaudhuri1

1Theoretical Statistics and Mathematics Division, Indian Statistical Institute,
Calcutta, India

Abstract

Many of the popular regression models used in survival analysis including Cox’s pro-
portional hazard model can be viewed as semiparametric models having some intrinsic
monotonicity properties. One is interested in estimating and drawing inference about
a finite dimensional Euclidean parameter in that model in the presence of an infinite
dimensional nuisance parameter. These survival analysis models are special cases of
monotone single index model used in econometrics. The use of average derivative
quantile regression techniques for parameter estimation in such models will be dis-
cussed. In addition to regression models with univariate response and a single index,
we will also discuss possible extensions of the methodology for multivariate response
and multiple index models.

Heteroscedastic and autocorrelation consistent esti-
mators of standard errors in robust regression

Christophe Croux1

1Department of Applied Economics, Katholieke Universiteit Leuven, Leuven,
Belgium

Abstract

A regression estimator is said to be robust if it is still reliable in the presence of
outliers. On the other hand, its standard error is said to be robust if it is still reliable
when the regression errors are autocorrelated and/or heteroscedastic. One speaks
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about heteroscedastic and autocorrelation consistent (HAC) estimators of standard
errors This paper shows how robust standard errors can be computed for several
robust estimators of regression. The improvement relative to non-robust standard
errors is illustrated by means of large-sample bias calculations, simulations, and a
real data example. It turns out that non-robust standard errors of robust estimators
may be severely biased. However, if autocorrelation and heteroscedasticity are absent,
non-robust standard errors are more efficient than the robust standard errors that we
propose. We therefore also present a test of the hypothesis that the robust and
non-robust standard errors have the same probability limit.

Shape Constraints and Multiscale Methods for
Density Estimation

Lutz Dümbgen1

1Department of Mathematical Statistics and Actuarial Science, University of Bern,
Bern, Switzerland

Abstract

In nonparametric curve estimation, shape constraints such as monotonicity or con-
vexity are known to yield estimators adapting to unknown smoothness properties of
the underlying curve. This talk discusses a particular shape constraint in the context
of density estimation. We assume that the underlying density is log-concave and show
that the resulting nonparametric estimators of the density and distribution function
have various interesting properties.

While log-concavity is a reasonable assumption in connection with homogeneous pop-
ulations, another task in density estimation is inference about modality and local
log-concavity or -convexity. We present some multiscale procedures for these pur-
poses yielding confidence statements with guaranteed level for finite samples.

This is joint work with Kaspar Rufibach (Bern) and Guenther Walther (Stanford).
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An Affine-Invariant Data Depth Based on Random
Hyperellipses

Ryan Elmore1

1Mathematical Sciences Institute, The Australian National University, Canberra,
Australia

Abstract

One of the fundamental concepts in the study of statistical depth is that the depth
function should be invariant to the choice of coordinate system. Although this notion
of affine-invariance is desirable, most of the current depth functions which satisfy this
property are difficult to compute in high dimensions. In this paper, a statistical depth
function based on random hyperellipses is proposed which is both affine-invariant
and simple to compute in any practical dimension. We will discuss the theoretical
properties of the depth measure and outline some of its potential applications. Several
examples are presented in order to illustrate these concepts. This is work with Bruce
Brown, Tom Hettmansperger, and Fengjuan Xuan.

Semiparametrically Efficient One-Step R-Estimation

Marc Hallin1, and Davy Paindaveine1

1Mathematics Department, ISRO, and ECARES, Université Libre de Bruxelles, Brux-
elles, Belgium

Abstract

Despite a long history, R-estimation methods, unlike rank tests, never made their
way to applications. And, even among the experts of rank-based methods, a pretty
widespread opinion is that “ranks are fine for testing but not for estimation”.

The reasons for this lack of symmetry between estimation and testing are twofold.
Practical reasons first: unlike rank test statistics, R-estimators in general are not
given under explicit closed forms, but follow from unpleasant optimization proce-
dures, involving discrete-valued objective functions. More fundamental reasons, too:
consistency and asymptotic normality proofs are rather elaborate, and restricted to
some traditional cases. And, asymptotic variances of R-estimators typically depend
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on the unknown underlying density. Such variances cannot be computed exactly,
and cannot be estimated easily. As a result, R-estimators, contrary to rank tests are
seldom considered in practice.

Statistical decision theory however suggests that the advantages of rank-based meth-
ods depend on the local properties of the model under study, not on the specific
inference problem under consideration. From the point of view of the asymptotic
theory of statistical experiments, once a type of scores (Wilcoxon, van der Waerden,
Laplace, ... ; in general, this choice is associated with some ”target density” f) has
been chosen, the rank transformation simply consists in mapping the original sequence
of statistical experiments E(n), say, onto another sequence E˜ (n)

f,g , where g is the ac-
tual unknown density of the observations. The local properties of the resulting model
are considered attractive from the point of view of hypothesis testing (distribution-
freeness and invariance, local powers). These properties belong to the corresponding
local Gaussian shift experiments, hence are fully characterized by E˜ (n)

f,g ’s information
matrices. Typically, the performance of optimal estimators in such models is measured
by a covariance matrix which is the inverse of the information matrix characterizing
the noncentrality parameter, under local alternatives, of the chi-square distributions
of optimal test statistic. If these information matrices are attractive from the point
of view of hypothesis testing, they should be equally attractive from the point of view
of point estimation. Actually, it has been shown by Hallin and Werker (2002) that,
under very general assumptions, these matrices coincide with the semiparametrically
efficient information matrices.

Now, the practical problems related with the implementation of R-estimation remain.
In a sense, they are the same as for the implementation of most M-estimators, in-
cluding the maximum likelihood ones: as a rule, no explicit form is provided, and
the estimator results from the minimization (maximization) of some rank-based ob-
jective function. In R-estimation, however, the form of objective functions, which are
intrinsically piecewise constant, creates some additional trouble. To the best of our
knowledge, the problems resulting from this discrete nature of rank-based objective
functions have been solved for location and linear regression models only (the seminal
paper in this direction is Jurečková 1971). An unsuccessful attempt has been made
in the context of linear (ARMA) time-series models (Allal et al. 2001), who explain
why the classical rank-based objective function approach fails in that case.

The usual way to escape numerical optimization, and to provide closed form versions
of asymptotically optimal estimators is (in the context of LAN experiments) Le Cam’s
one-step method. Implementation of this method in the present context however runs
into the same difficulties as the estimation of asymptotic covariance matrices of R-
estimators. We are showing how a very intuitive local maximum likelihood argument
allows for a simple and feasible solution.

Applications include classical R-estimation procedures but also less traditional ones,
such as those involving serial rank statistics, rank-and-sign statistics, or multivariate,
hyperplane-based signed rank statistics.
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Bayesian R-Estimates

Tom Hettmansperger1, and Xiaojiang Zhan2

1Department of Statistics, The Pennsylvania State University, State College, PA, USA
2Merck & Co.

Abstract

When prior information exists, it may be desirable to incorporate it in a data analy-
sis, even when we are using robust rank-based methods. In this talk we discuss the
implementation of nonparametric rank-based procedures in a Bayesian context. We
summarize the information in a sample of data via the (possibly asymptotic) distrib-
ution of some rank-based quantity, and use that distribution as a pseudo-likelihood.
Meanwhile, we suppose a prior distribution for the parameter(s) of interest in the
model. By Bayes’ theorem, we can obtain the complete posterior distribution (or
the posterior distribution up to a normalizing constant) of the parameter(s) given
the rank-based quantity. Statistical inference then proceeds based on this posterior
distribution. The one-sample location model is considered using several rank-based
quantities from common scores statistics such as the sign statistic, the Wilcoxon
signed rank statistic and the normal scores statistic.

Nonparametric Methods and Extreme Value Analy-
sis

Jürg Hüsler 1

1Department of Mathematical Statistics and Actuarial Science, University of Bern,
Bern, Switzerland

Abstract

We discuss some nonparametric ideas in the class of extreme value distributions and
extreme value models. The class of extreme value distributions are applied in the
analyses of extreme values in finance, ecology and other fields. The class is a three
parameter family of asymmetric distributions which have some further interesting
features, as e.g. heavy tails and finite endpoints of the support. The aim of this work
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is to evaluate whether the nonparametric methods can be advantageous also in this
class of distributions.

Asymptotics for Extreme Regression Quantiles

Jana Jurečková 1

1Department of Probability and Statistics, Charles University in Prague, Prague,
Czech Republic

Keywords: Regression Quantile, R-estimator, Extreme Regression Quantile.

Abstract

Consider the linear regression model

Y = β01n + Xβ + E (1)

with observations Y = (Y1, . . . , Yn)′, i.i.d. errors E = (E1, . . . , En)′ with an unknown
distribution function F, increasing on the set {x : 0 < F (x) < 1}, and unknown pa-
rameter β∗ = (β0, β1, . . . , βp)′. The extreme (maximal) regression quantile is defined
as a solution of the linear program

∑n
i=1(b0 + x′ib) =: min under the restrictions

b0 + x′ib ≥ Yi, i = 1, . . . , n, b0 ∈ R, b ∈ Rp. Jurečková and Picek (2005) showed
that the extreme regression quantile can be equivalently written in a two step ver-
sion, starting with an R-estimator β̃nR of the slope parameters, generated by the
score function ϕ(u) = I[u ≥ 1 − 1

n ] − 1
n , 0 ≤ u ≤ 1, and then ordering the resid-

uals with respect to β̃nR. Jurečková (2005) showed that, provided the density f of
the Ei belongs to the domain of attraction of the Gumbel extreme distribution and
nf(F−1(1− 1

n )) →∞ as n →∞, the slope component β̃nR of the extreme regression
quantile consistently estimates β and admits the asymptotic representation

nf
(
F−1(1− 1

n )
) [

β̃nR(1− 1
n )− β

]
(2)

= n
( n∑

i=1

(xni − x̄n)(xni − x̄n)′
)−1 n∑

j=1

(xnj − x̄n)

[
an(Rj(0), 1− 1

n )− (1− 1
n )

]
+ op(1)

[
= Op(1)

]
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where Rj(0) is the rank of Yi among Y1, . . . , Yn under β = 0, x̄n = n−1
∑n

i=1 xni and

an(j, α) =


0, j ≤ nα,

j − nα, nα ≤ j ≤ nα + 1,

1, nα + 1 ≤ j, j = 1, . . . , n.

are Hájek’s rank scores. If xn1, . . . ,xnn are random, independent of E1, . . . , En, and
create a random sample from a p-variate distribution function H with expectation 0
and satisfying 1

n

∑n
i=1 xnix′ni

p−→ Q as n → ∞, with a positively definite matrix Q
of order p× p, then the representation (2) changes to the form

nf
(
F−1(1− 1

n )
) [

β̃nR(1− 1
n )− β

]
(3)

= Q−1
n∑

j=1

xnj

[
an(Rj(0), 1− 1

n )− (1− 1
n )

]
+ op(1)

[
= Op(1)

]
.

The representations (2) and (3) enable to derive the asymptotic distributions of{
nf

(
F−1(1− 1

n )
) [

β̃nR(1− 1
n )− β

]}∞
n=1

both for the random and nonrandom xni.
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An Empirical Comparison of Ensemble Methods Based
on Classification Trees

Mounir Hamza1 and Denis Larocque1

1Department of Quantitative Methods, HEC Montréal, Montréal, Québec, Canada

Keywords: Bagging, Boosting, Arcing, Random forest, Classification tree, CART,
Noise, Linear combination of variables, Splitting rule, Gini, Entropy, Twoing.

Abstract

In this paper, we perform an empirical comparison of the classification error of several
ensemble methods based on classification trees. This comparison is performed by using
fourteen data sets that are publicly available and that were used in Lim, Loh and Shih
(Machine Learning 40, 203-228, 2000). The methods considered are a single tree,
Bagging, Boosting (Arcing) and random forests. They are compared from different
perspectives. More precisely, we look at the effects of noise and of allowing linear
combinations in the construction of the trees, the differences between some splitting
criteria and, specifically for random forests, the effect of the number of variables from
which to choose the best split at each given node. Moreover, we compare our results
with those obtained in Lim et al. (2000). In this study, the best overall results are
obtained with random forests. In particular, random forests are the most robust
against noise. The effect of allowing linear combinations and the differences between
splitting criteria are small on average, but can be substantial for some data sets.

Mining Massive Text Data and Developing Robust
Statistical Tracking

Regina Liu1

1Department of Statistics, Rutgers University, Piscataway, NJ, USA

Abstract

We present a systematic data mining procedure for exploring large free-style text
datasets to discover useful features and develop tracking statistics, often referred to
as performance measures or risk indicators. The procedure includes text classification,
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construction of tracking statistics, inference under error measurements. An aviation
safety report repository from the FAA is used to illustrate applications of our research
to aviation risk management and general decision-support systems. Some specific text
analysis methodologies and tracking statistics are discussed. A robust approach for
incorporating misclassified data or error measurements into the inference for tracking
statistics is proposed and evaluated.

Although most illustrations here are drawn from aviation safety data, the proposed
data mining procedure with its robust inference framework applies to many other do-
mains, including, for example, mining free-style medical reports for tracking possible
disease outbreaks.

This is joint work with Daniel Jeske, Department of Statistics, UC Riverside.

Rank-Based Analyses of Multivariate Linear Models
with Applications to Profile Analysis

Joseph McKean1, John Kloke1, and Majda Salaman1

1Department of Mathematics and Statistics, Western Michigan University, Kalama-
zoo, MI, USA

Abstract

In this talk, we present several new rank-based procedures for the analysis of multivari-
ate linear models. One procedure is an affine equivariant estimate for the regression
coefficient matrix of the multivariate linear model. These estimates are based on a
transformation and retransformation technique that uses Tyler’s (1987) M -estimator
of scatter. The proposed estimates are obtained by retransforming the componentwise
rank-based estimate due to Davis and McKean (1993) and a componentwise gener-
alized rank estimate. This procedure is for the general linear multivariate model.
For repeated measure type responses, we discuss a rank-based GEE procedure and
a rank-based procedure which utilizes Arnold’s (1981) initial transformation of the
responses. Asymptotic theory is presented for all the procedures. We then compare
the methods over a simulation study on profile models.
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The Place of Depth in Nonparametric Statistics

Ivan Mizera1

1Department of Mathematical and Statistical Sciences, University of Alberta, Ed-
monton, Alberta, Canada

Abstract

Although halfspace depth was originally proposed in the context of sign test for bi-
variate data, and also as a possible multivariate ranking device, the subsequent, and
relatively recent development of its generalizations to various data-analytic situations
somehow did not emphasize the connection to classical methods. We would like to of-
fer some views on the possible use of halfspace depth in statistical analyses performed
in a nonparametric way and point out some specific virtues and problems of this type
of approach. A special focus will be on data coming from controlled experiments that
are typically analyzed via linear model techniques.

Rank-Based Inference on the Shape of Elliptical Dis-
tributions

Marc Hallin1, and Davy Paindaveine1

1Mathematics Department, ISRO, and ECARES, Université Libre de Bruxelles, Brux-
elles, Belgium

Abstract

We propose (i) a class of rank-based procedures for testing that the shape matrix of an
elliptical distribution is equal to some fixed value (this problem includes the problem
of testing for sphericity as a particular case), as well as (ii) a class of R-estimators for
the shape parameter. The proposed tests/estimators are invariant/equivariant under
translations, monotone radial transformations, rotations, and reflections with respect
to the estimated center of symmetry. For adequately chosen scores, they are locally
asymptotically optimal (in the Le Cam sense) at given densities. The multivariate
ranks used throughout are those of the distancesin the metric associated with the
null value of the shape matrix (for testing problems) or with a preliminary estimate
of the shape parameter (for the estimation problem)between the observations and the
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estimated center of the distribution. Asymptotic relative efficiencies with respect to
the standard Gaussian procedures (i.e., pseudo-Gaussian LRT and MLE) are derived,
and are shown to be uniformly high for specific choices of the score functions. The
proposed tests are valid without any moment assumption. As for the proposed R-
estimators, they are defined as iterative M-estimators. Unlike those obtained via the
methods described in Marc Hallins talk, these do not require the difficult estimation of
a cross-information coefficient. Nevertheless, they are root-n consistent only under a
(very) mild condition on this unknown cross-information coefficient. We also compute
their influence functions and show that, similarly as for univariate R-estimation for
location, a broad range of robustness behaviors can be obtained by considering various
types of score functions.

On Zeros in the Sign and Signed Rank Test

Ronald H. Randles1

1Department of Statistics, University of Florida, Gainesville, FL, USA

Abstract

The traditional method of deleting zero observations in the sign and signed rank tests
are in many applications, the right answer to the wrong question. In these settings
the zeros should play a role that favors the null hypothesis. This talk will emphasize
ways to use the zeros in a conservative manner, but one that produces good power for
the appropriate question. Particular emphasis is placed on two-tailed test settings,
because a method of obtaining an appropriate p-value in these cases is less obvious.
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The Spatial Multivariate Quantile Function:
Strengths, Weaknesses, Competitors

Robert Serfling1

1Department of Mathematical Sciences, University of Texas at Dallas, Richardson,
TX, USA

Abstract

In recent years a number of quite different multivariate depth and quantile functions
have been formulated and investigated. A timely question is whether one of these
can or should be adopted as the best choice for practical use. This talk will focus
on the spatial multivariate quantile function (Choudhuri, Dudley) as a benchmark.
For this case, we first will review basic features and characterizations and associated
depth, centered rank, and outlyingness functions. We then will treat productive re-
sults now available for this quantile function: the influence function, masking and
swamping breakdown points of associated outlier identification procedures, cluster
analysis procedures, multivariate sign test procedures, and a Bahadur-Kiefer (B-K)
representation. We also will introduce an extension to a spatial U-quantile function,
along with an extended B-K theorem. For the empirical spatial U-quantile func-
tion, the B-K representation provides a useful U-statistic approximation. In terms of
spatial U-quantiles, interesting new multivariate nonparametric estimators and test
statistics can be formulated, for example generalized multivariate signed-rank tests,
an extension to multiple regression of Theil’s nonparametric simple linear regression
slope estimator, and a new matrix-valued dispersion measure whose sample analogue
estimator has breakdown point 0.293 independently of the dimension of the data. We
will also discuss equivariance limitations of the spatial quantile function and explore
whether these can be overcome by a suitable modification. Finally, we will examine
major competing depth and quantile approaches comparatively against the strengths
and weaknesses of the spatial quantile function.
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Bandwidth Selection for Kernel Density Estimates
Based on Data Sharpening

Simon Sheather1

1Department of Statistics, Texas A&M University, College Station, TX, USA

Abstract

A new general method for reducing bias in density estimation has been proposed by
Hall and Minnotte (2002, JRSSB). The method is known as data-sharpening since it
involves moving the data away from regions where they were sparse towards regions
where the density is higher. Once the data have been ”sharpened” they are used in
a kernel estimator to produce a less biased estimator. In this talk, we shall consider
the problem of choosing the bandwidth for sharpened density estimates.

A Nonparametric Multivariate Multisample Test

Shoja’eddin Chenouri1, and Christopher G. Small2

1School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada
2Department of Statistics and Actuarial Science, University of Waterloo, Waterloo,
Ontario, Canada

Abstract

In this talk, we shall consider a family of nonparametric multivariate multisample
tests based on depth rankings. These tests are of Kruskal-Wallis type in the sense
that the samples are variously ordered. However, unlike the Kruskal-Wallis test, these
tests are based upon a center-outward ranking using a statistical depth function such
as the halfspace depth or the Mahalanobis depth, etc. Unlike the univariate case, mul-
tivariate data sets can be ordered using many different depth-based orderings. The
types of tests we propose are adapted to the depth function that is most appropriate
for the application. Under the null hypothesis that all samples come from the same
distribution, we show that the test statistic asymptotically has a chi-square distribu-
tion. In addition, for small sample sizes, the test statistic is exactly distribution-free.
Some comparisons of power are made with the Hotelling T 2, and the test of Choi and
Marden (1997). Our test is particularly recommended when the data are of unknown
distribution type where there is some evidence that the density contours are not el-
liptical. However, when the data are normally distributed, we often obtain relative
power over 95%.
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Invariant coordinate selection (ICS): A nonparamet-
ric view of independent components analysis (ICA)

David E. Tyler1

1Department of Statistics, Rutgers University, Piscataway, NJ, USA

Abstract

An obvious method for generating measures of location for p-dimensional distributions
is to simply apply univariate measures of location to each of the coordinates, e.g. the
coordinatewise median. A drawback to this approach is that the resulting measure
of multivariate location is not affine equivariate. If one could select the coordinates
in an invariant manner, however, i.e. select p data dependent linear combinations of
the variables which are invariant under nonsingular transformations of the variables,
then applying coordinatewise measure of univariate location to the transformed vari-
ables and then back-transforming gives an affine equivariant measure of multivariate
location. Affine covariant measures for the scatter matrix can also be generated using
coordinatewise measures of scale.

To be more specific, let Y = {y1, . . . , yn} be a p-dimensional data set. Suppose we
are able to define a nonsingular matrix A(Y ) such that the transformed p-dimensional
data set Z = A(Y )Y is invariant under nonsingular transformations of Y , i.e. A(Y )Y =
A(BY )BY for any nonsingular matrix B. If we then apply univariate measures of lo-
cation and scale to each of the components of Z producing µ(Z) ∈ <p and σ(Z) ∈ <p

respectively, then affine equivariant measures of multivariate location and scatter can
be defined by

µ(Y ) = A(Y )−1µ(Z) and Σ(Y ) = A(Y )−1D(σ2(Z))(A(Y )′)−1,

where D(·) is a diagonal matrix whose diagonal elements are given by its vector
argument.

One method for generating such an invariant transformation is as follows. First
compute two different affine covariate estimates of scatter for Y , say Vo and V1, and
then define A(Y ) = (a1, . . . , ap) such that

Voaj = γjV1aj for j = 1, . . . , p or equivalently, VoA(Y ) = V1A(Y )∆,

where ∆ = D(γ1, . . . , γp). That is, A(Y ) are the principal component vectors of
Vo, relative to the Mahalonobis inner product defined via V1. The transformed vari-
ates Z = A(Y )Y can be viewed as affine invariant principal components. In a per-
sonal communication, Hannu Oja has noted that under certain conditions, the matrix
A(Y )−1 also represents a solution to the independent component analysis problem.

Beside using the transformed variate Z to generate measures of multivariate loca-
tion and scatter, these transformed variates can also be used to generate multivariate
generalizations of univariate concepts, e.g. affine equivariate quantiles. They can
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also be used for generating affine invariant nonparametric tests, e.g. an affine invari-
ant sign tests which is asymptotically nonparametric over the class of all symmetric
multivariate distributions and not just elliptically symmetric distributions.

Finally, we note that one can produce affine invariant diagnostic plots by plotting the
components of Z or by making pairwise scatter plots of the components of Z. We
give several examples which illustrates the utility of the proposed methods.

This talk is based on joint work with Oja Hannu of the University of Jyväskylä and
Lutz Dümbgen of the University of Bern.

Multi-Dimensional Trimming Based on Projection
Depth

Yijun Zuo1

1Department of Statistics and Probability, Michigan State University, East Lansing,
MI, USA

Abstract

With a very natural order principle, trimming in one dimension is straightforward.
Univariate trimmed means are among most popular estimators of location parame-
ters. They can be very robust against outliers and heavy tailed distributions while
enjoying a very high efficiency at a variety of distributions. Multi-dimensional data
often contain outliers and are ”heavy tailed”. Extending trimming idea to the multi-
dimensional setting is quite desirable. The task, however, becomes non-trivial. In this
talk, multi-dimensional trimming based on data depth is discussed. It is found that
multi-dimensional depth trimmed means can possess very desirable properties such
as high efficiency as well as high robustness. Consequently they can serve very well
as multi-dimensional location estimators. Trimmed means based on different notions
of data depth are also compared based on their performance. Inference procedures
based on the depth trimmed means are discussed.
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Robust Correlation Applied to Locating Landmarks

Jan Kalina1

1University of Duisburg–Essen, Department of Mathematics, Essen, Germany

Keywords: Computational aspects of robust methods, Human faces.

Abstract

In our work with images of human faces (joint work with P.L. Davies), similarity
between two images must be measured in a robust way. Some of suitable correlation
measures are based on robust regression (least trimmed squares or least weighted
squares), other examples include directly the maximal weighted correlation coefficient
over all permutations of the weights.

Such methods are computationally intensive and can be only approximated. We
generalize the algorithm of Kalina (2003) to approximate the minimum of the weighted
loss function in both regression and correlation context.

In an example we find a better approximation to the least trimmed squares estimator
than software packages R and S-Plus. Then we use the methods to automatically
search for the vertical axis of symmetry in human faces or to locate the eyes using
templates.

References

J. Kalina (2003). Autocorrelated disturbances of robust regression. In Fournier
B. et al., eds., Proceedings EYSM 2003, pp. 65-72, Ovronnaz, Switzerland.
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Graphical Comparison of Multivariate Nonparamet-
ric Location Tests for Restricted Alternatives

Michael Vock1

1Department of Mathematical Statistics and Actuarial Science, University of Bern,
Bern, Switzerland

Abstract

There have been several proposals of nonparametric tests for restricted (or “one-
sided”) multivariate location alternatives. The selection of a suitable test for a specific
problem is an open question. We discuss the most common types of hypotheses and
present a graphical means of assessing the adequacy of a test for the different types
of hypotheses. This leads to a classification of the test procedures. In contrast to
a graphical representation using rejection regions (which is frequently used in the
parametric context), our approach is suitable for the comparison of tests based on
entirely different statistics.
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