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Outline

• What is data depth?

• Elliptical data depth

• Properties of elliptical depth

• Illustrations

• Applications

• Example(s)
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Data Depth

Zuo and Serfling (2000) informal definition:

“...for a distribution P on R
d, a corresponding depth func-

tion is any function D(x; P ) which provides a P -based
center-outward ordering of points x ∈ R

d.”

• Monotonicity of D(·; P ) relative to deepest point.

• Affine invariance of the depth function.

• Maximum depth at the “center” of the distribution.

• D(x; P ) → 0 as ‖x‖ → ∞

Tampere, Finland NP Workshop – p.3



Data Depth (cont.)

• Liu, Parelius, and Singh (1999) provide a comprehensive overview
of data depths, their properties, and potential applications.

• Data depth functions are a nonparametric, exploratory
data-analytic technique for describing multivariate data sets, e.g.
DD-plots or sunburst plots.

• Used to quantify a point or region in high dimensions as a
single-dimensional quantity.

• Generally, data depths provide a center-outward ranking of the
data; this leads to rank-based inferential procedures.
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Data Depth (cont.)

• Examples: Mahalanobis depth, Mahalanobis (1936); Halfspace
depth, Tukey (1975); Oja’s depth, Oja (1983); Simplicial depth, Liu
(1990); Spherical depth, Elmore et al. (2004).

• Most of the current depth functions are computationally intractable
for high dimensions.

• For example, algorithms for computing the simplicial depth are of
order O(nd+1); however, Rousseeuw and Ruts (1996) describe an
algorithm that reduces the order to O(nd−1 log n).
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Sample Simplicial Depth
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Sample Spherical Depth
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Elliptical Data Depth

• Let X and Y be two independent random vectors having
common probability distribution function F on R

d, d ≥ 1.

• The elliptical depth function is defined in terms of the distribution
F at a point t ∈ R

d by

D(t;CF ) = PF [t ∈ e(X, Y )]

where the region e(X, Y ) denotes the unique, closed random
hyperellipse formed by X, Y , and the symmetric, positive-definite
matrix CF .

• The elliptical region is defined by

e(X, Y ) =
{

t : (X − t)T
C

−1

F (Y − t) ≤ 0
}

.
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Theorems

1. If F is an absolutely continuous distribution on R
d, then D(x;CF )

is continuous with respect to x.
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Theorems

1. If F is an absolutely continuous distribution on R
d, then D(x;CF )

is continuous with respect to x.

2. If F is an absolutely continuous distribution on R
d and it is

angularly symmetric about the θ, then D(θ;CF ) = 1/2.

Tampere, Finland NP Workshop – p.9



Theorems

1. If F is an absolutely continuous distribution on R
d, then D(x;CF )

is continuous with respect to x.

2. If F is an absolutely continuous distribution on R
d and it is

angularly symmetric about the θ, then D(θ;CF ) = 1/2.

3. If F is absolutely continuous and angularly symmetric about the
origin, then D(αx;CF ) is a monotone nonincreasing in α ≥ 0 for
all x ∈ R

d.
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Theorems

1. If F is an absolutely continuous distribution on R
d, then D(x;CF )

is continuous with respect to x.

2. If F is an absolutely continuous distribution on R
d and it is

angularly symmetric about the θ, then D(θ;CF ) = 1/2.

3. If F is absolutely continuous and angularly symmetric about the
origin, then D(αx;CF ) is a monotone nonincreasing in α ≥ 0 for
all x ∈ R

d.

4. For any distribution function F on R
d and x ∈ R

d, the elliptical
depth function vanishes at infinity, i.e. sup‖x‖≥M D(x;CF ) → 0 as
M → ∞.

Tampere, Finland NP Workshop – p.9



Empirical Version

• Let x1, x2, . . . ,xn be a random sample from the distribution F .

• We define the sample elliptical depth function at a point t as

Dn(t;CF ) =

(

n

2

)−1
∑

i<j

I (t ∈ e(xi, xj))

where I(A) is the indicator function of the event A.

• It is easy to see that even the most naïve algorithm is of order
O(dn2).

• In practice, the matrix CF is usually unknown and must be
estimated.
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Order of Computation
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Empirical Version (cont.)

• The more practical estimator given by

Dn(t; Ĉx) =

(

n

2

)−1
∑

i<j

I (t ∈ en(xi, xj))

where

en(xi, xj) =
{

t : (xi − t)T
Ĉ

−1
x (xj − t) ≤ 0

}

for some affine-equivariant estimator of the scatter matrix, CF .

• Spherical depth is a special case of elliptical depth with Id is used
wherever a CF is given above.
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Sample Elliptical Depth
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Sample Elliptical Depth
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Scatter Matrices

• A data-determined, symmetric, positive-definite matrix B̂x based
on xi for i = 1, 2, . . . , n is said to be an affine equivariant scatter
matrix if and only if whenever each xi is transformed by a fixed,
nonsingular d × d matrix D into Dxi, the resulting B̂Dx matrix
satisfies

D
T
B̂

−1

DxD = c0B̂
−1
x

where c0 is a positive scalar that may depend on D and the xi’s.

• Examples: Sample covariance matrix and Tyler’s (1987)
M -estimator of scatter.
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Tyler’s Scatter Matrix

• Tyler’s scatter matrix (ÂT
x Âx)−1 is defined so that Âx satisfies

1

n

n
∑

i=1

(

Âx(xi − θ)

‖Âx(xi − θ)‖

)(

Âx(xi − θ)

‖Âx(xi − θ)‖

)T

=
1

d
Id

where Id is the d-dimensional identity matrix and θ is a measure
of center.

• Tyler argues that his scatter matrix is the “most robust” estimator
of C, the scatter matrix of an elliptical distribution.

• He shows that (ÂT
x Âx)−1 is strongly consistent in estimating C

when sampling from a continuous distribution.
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Theorem

The two elliptical depth measures defined in equations above are
affine invariant. That is, for any nonsingular matrix D, we have

Dn(t;CF ) = Dn(t∗;DCF D
T ), and

Dn(t; Ĉx) = Dn(t∗; Ĉy)

where t∗ = Dt and Ĉy is an affine-equivariant scatter matrix defined
by yi, i = 1, . . . , n. To see this, note that for Y = DX

Dn(t∗; Ĉy) =

(

n

2

)−1
∑

i<j

I{(yi − t∗)
T
Ĉ

−1
y (y − t∗) ≤ 0}

=

(

n

2

)−1
∑

i<j

I{(xi − t)T
D

T
Ĉ

−1
y D(xi − t) ≤ 0}.
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Bivariate Normal, ρ = 0.6, n = 100

Spherical Depth
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Bivariate Normal, ρ = 0.6, n = 100

Elliptical Depth: Covariance
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Bivariate Normal, ρ = 0.8, n = 100
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Bivariate Normal, ρ = 0.8, n = 100

Elliptical Depth: Covariance
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Computation of the Contours

• Power Mac G5, 1.8 GHz, 1GB Memory, 900 MHz Bus Spd

• Each depth function was calculated at each of 10000
equally-spaced points in the grid [−2.5, 2.5]2.

Depth Time

Spherical 29.5 seconds

Elliptical 86.5 seconds

Simplicial1 3.47 hours

Simplicial2 16.5 seconds
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Multivariate Median

• The elliptical depth median is defined as the point, or region of
points, which maximize the elliptical depth function, i.e.

θ = arg max
t

D(t;CF ).

Similarly, the sample spherical median is defined by

θ̂ = arg max
t

Dn(t; Ĉx).

• The sample elliptical depth median defined above is affine
equivariant. This follows from the fact that the depth function is
affine invariant.
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Consistency Conjecture

Let F be an absolutely continuous distribution on R
d with bounded

density f and scatter matrix CF . If Ĉx is an affine-equivariant scatter
matrix such that Ĉx → CF a.s., then the following results hold:

1. The sample elliptical depth Dn(t; Ĉx) is uniformly consistent in
estimating D(t;C), i.e.,

sup
t∈Rd

|Dn(t; Ĉx) − D(t;C)|
a.s.
−→ 0 as n → ∞.

2. Furthermore, if f does not vanish in a neighborhood of θ and if
D(·;CF ) is uniquely maximized at θ, then θ̂n

a.s.
−→ θ, as n → ∞.
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Notes on the Median

• Note that this objective function Dn(t; Ĉx) is a step function and
traditional gradient-based methods are not feasible.

• Elmore, Hettmansperger, and Xuan (2004) discuss a
transformation-retransformation procedure which leads to an
affine-invariant spherical depth-based median. The elliptical depth
essentially circumvents the need to move between the two
spaces, however, the two depth functions are similar.
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Example One

• The data set was originally presented in Andrews and Herzberg
(1985) and presented again in Hettmansperger and Randles
(2002).

• Seven skull measurements were made on a sample (n = 50) from
the Macropus giganteus species of grey kangaroo.

• The measurements include basilar length, occipitonasal length,
nasal length, nasal width, crest width, mandible width and
mandible length.

• We computed the component sample mean (X̄) and median (θ̂c),
an affine-equivariant median (θ̂HR) given in Hettmansperger and

Randles (2002), the spherical median (θ̂1a
and θ̂1b

), and the

elliptical median (θ̂2).
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Example One (cont.)

Dimension

Stat
I II III IV V VI VII

X̄ 1491.4 1585.1 702.9 245.4 110.1 135.0 193.8

θ̂c 1490.5 1570.0 700.5 243.5 113.0 136.0 194.5

θ̂HR 1477.4 1572.3 694.9 243.8 111.7 134.5 192.3

θ̂1a 1503.6 1578.0 703.3 245.8 104.9 134.7 197.7

θ̂1b
1478.4 1572.3 693.4 243.3 115.0 134.2 191.8

θ̂2 1480.5 1575.5 695.8 246.3 110.8 134.8 192.2
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Example Two

Treatment CO2 Halothane

1 high N

2 low N

3 high Y

4 low Y

The four treatment combinations for the sleeping-dog dataset as given

in Johnson and Wichern (1992). Nineteen dogs were used in the study.
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Example Two – Medians
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Conclusions and Future Work

• We proposed an new statistical depth function which satisfies all
of the desirable properties of a legitimate depth function and it is
easy to compute in any dimension.

• We develop an affine-equivariant estimator of multivariate
locationa based on this test.

• Completing the proofs and finding the asymptotic distribution of
the test statistic.

• A multi-sample, multivariate test for location parameter.
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