An Affine-Invariant Data Depth Based on Random Hyperellipses

Ryan T. Elmore

Ryan.Elmore@anu.edu.au

ANU \xrightarrow{pr} Colorado State University* 8 – 10 June 2005

This is joint work with Thomas P. Hettmansperger, Fengjuan Xuan, and Bruce Brown.

*– Note that \xrightarrow{pr} denotes convergence in "profession".

Outline

- What is data depth?
- Elliptical data depth
- Properties of elliptical depth
- Illustrations
- Applications
- Example(s)

Data Depth

Zuo and Serfling (2000) informal definition:

"...for a distribution P on \mathbb{R}^d , a corresponding depth function is any function D(x; P) which provides a P-based center-outward ordering of points $x \in \mathbb{R}^d$."

- Monotonicity of $D(\cdot; P)$ relative to deepest point.
- Affine invariance of the depth function.
- Maximum depth at the "center" of the distribution.
- $D({\pmb x};P) o 0$ as $\|{\pmb x}\| o \infty$

Data Depth (cont.)

- Liu, Parelius, and Singh (1999) provide a comprehensive overview of data depths, their properties, and potential applications.
- Data depth functions are a nonparametric, exploratory data-analytic technique for describing multivariate data sets, e.g. DD-plots or sunburst plots.
- Used to quantify a point or region in high dimensions as a single-dimensional quantity.
- Generally, data depths provide a center-outward ranking of the data; this leads to rank-based inferential procedures.

Data Depth (cont.)

- Examples: Mahalanobis depth, Mahalanobis (1936); Halfspace depth, Tukey (1975); Oja's depth, Oja (1983); Simplicial depth, Liu (1990); Spherical depth, Elmore et al. (2004).
- Most of the current depth functions are computationally intractable for high dimensions.
- For example, algorithms for computing the simplicial depth are of order $O(n^{d+1})$; however, Rousseeuw and Ruts (1996) describe an algorithm that reduces the order to $O(n^{d-1} \log n)$.

Sample Simplicial Depth

Sample Spherical Depth

Elliptical Data Depth

- Let X and Y be two independent random vectors having common probability distribution function F on \mathbb{R}^d , $d \ge 1$.
- The elliptical depth function is defined in terms of the distribution F at a point $t \in \mathbb{R}^d$ by

$$D(\boldsymbol{t}; \mathbf{C}_F) = P_F [\boldsymbol{t} \in e(\boldsymbol{X}, \boldsymbol{Y})]$$

where the region e(X, Y) denotes the unique, closed random *hyperellipse* formed by X, Y, and the symmetric, positive-definite matrix C_F .

• The elliptical region is defined by

$$e(\boldsymbol{X}, \boldsymbol{Y}) = \left\{ \boldsymbol{t} : (\boldsymbol{X} - \boldsymbol{t})^T \mathbf{C}_F^{-1} (\boldsymbol{Y} - \boldsymbol{t}) \leq 0 \right\}.$$

1. If *F* is an absolutely continuous distribution on \mathbb{R}^d , then $D(x; \mathbf{C}_F)$ is continuous with respect to x.

- 1. If *F* is an absolutely continuous distribution on \mathbb{R}^d , then $D(\boldsymbol{x}; \mathbf{C}_F)$ is continuous with respect to \boldsymbol{x} .
- 2. If *F* is an absolutely continuous distribution on \mathbb{R}^d and it is angularly symmetric about the θ , then $D(\theta; \mathbf{C}_F) = 1/2$.

- 1. If *F* is an absolutely continuous distribution on \mathbb{R}^d , then $D(\boldsymbol{x}; \mathbf{C}_F)$ is continuous with respect to \boldsymbol{x} .
- 2. If *F* is an absolutely continuous distribution on \mathbb{R}^d and it is angularly symmetric about the θ , then $D(\theta; \mathbf{C}_F) = 1/2$.
- 3. If *F* is absolutely continuous and angularly symmetric about the origin, then $D(\alpha x; \mathbf{C}_F)$ is a monotone nonincreasing in $\alpha \ge 0$ for all $x \in \mathbb{R}^d$.

- 1. If *F* is an absolutely continuous distribution on \mathbb{R}^d , then $D(\boldsymbol{x}; \mathbf{C}_F)$ is continuous with respect to \boldsymbol{x} .
- 2. If *F* is an absolutely continuous distribution on \mathbb{R}^d and it is angularly symmetric about the θ , then $D(\theta; \mathbf{C}_F) = 1/2$.
- 3. If *F* is absolutely continuous and angularly symmetric about the origin, then $D(\alpha x; \mathbf{C}_F)$ is a monotone nonincreasing in $\alpha \ge 0$ for all $x \in \mathbb{R}^d$.
- 4. For any distribution function F on \mathbb{R}^d and $x \in \mathbb{R}^d$, the elliptical depth function vanishes at infinity, i.e. $\sup_{\|x\| \ge M} D(x; \mathbf{C}_F) \to 0$ as $M \to \infty$.

Empirical Version

- Let x_1, x_2, \ldots, x_n be a random sample from the distribution F.
- We define the sample elliptical depth function at a point t as

$$D_n(\boldsymbol{t}; \mathbf{C}_F) = {\binom{n}{2}}^{-1} \sum_{i < j} I\left(\boldsymbol{t} \in e(\boldsymbol{x}_i, \boldsymbol{x}_j)\right)$$

where I(A) is the indicator function of the event A.

- It is easy to see that even the most naïve algorithm is of order $O(dn^2)$.
- In practice, the matrix C_F is usually unknown and must be estimated.

Order of Computation

Empirical Version (cont.)

• The more practical estimator given by

$$D_n(\boldsymbol{t}; \hat{\mathbf{C}}_x) = {\binom{n}{2}}^{-1} \sum_{i < j} I\left(\boldsymbol{t} \in e_n(\boldsymbol{x}_i, \boldsymbol{x}_j)\right)$$

where

$$e_n(\boldsymbol{x}_i, \boldsymbol{x}_j) = \left\{ \boldsymbol{t} : (\boldsymbol{x}_i - \boldsymbol{t})^T \hat{\mathbf{C}}_x^{-1} (\boldsymbol{x}_j - \boldsymbol{t}) \le 0 \right\}$$

for some affine-equivariant estimator of the scatter matrix, C_F .

 Spherical depth is a special case of elliptical depth with I_d is used wherever a C_F is given above.

Sample Elliptical Depth

Sample Elliptical Depth

Scatter Matrices

 A data-determined, symmetric, positive-definite matrix B_x based on x_i for i = 1, 2, ..., n is said to be an affine equivariant scatter matrix if and only if whenever each x_i is transformed by a fixed, nonsingular d × d matrix D into Dx_i, the resulting B_{Dx} matrix satisfies

$$\mathbf{D}^T \hat{\mathbf{B}}_{\mathbf{D}x}^{-1} \mathbf{D} = c_0 \hat{\mathbf{B}}_x^{-1}$$

where c_0 is a positive scalar that may depend on **D** and the x_i 's.

• Examples: Sample covariance matrix and Tyler's (1987) *M*-estimator of scatter.

Tyler's Scatter Matrix

• Tyler's scatter matrix $(\hat{\mathbf{A}}_x^T \hat{\mathbf{A}}_x)^{-1}$ is defined so that $\hat{\mathbf{A}}_x$ satisfies

$$\frac{1}{n}\sum_{i=1}^{n} \left(\frac{\hat{\mathbf{A}}_{x}(\boldsymbol{x}_{i} - \boldsymbol{\theta})}{\|\hat{\mathbf{A}}_{x}(\boldsymbol{x}_{i} - \boldsymbol{\theta})\|} \right) \left(\frac{\hat{\mathbf{A}}_{x}(\boldsymbol{x}_{i} - \boldsymbol{\theta})}{\|\hat{\mathbf{A}}_{x}(\boldsymbol{x}_{i} - \boldsymbol{\theta})\|} \right)^{T} = \frac{1}{d}\mathbf{I}_{d}$$

where I_d is the *d*-dimensional identity matrix and θ is a measure of center.

- Tyler argues that his scatter matrix is the "most robust" estimator of C, the scatter matrix of an elliptical distribution.
- He shows that $(\hat{\mathbf{A}}_x^T \hat{\mathbf{A}}_x)^{-1}$ is strongly consistent in estimating C when sampling from a continuous distribution.

The two elliptical depth measures defined in equations above are affine invariant. That is, for any nonsingular matrix \mathbf{D} , we have

$$D_n(t; \mathbf{C}_F) = D_n(t_*; \mathbf{D}\mathbf{C}_F\mathbf{D}^T), \text{ and}$$

 $D_n(t; \hat{\mathbf{C}}_x) = D_n(t_*; \hat{\mathbf{C}}_y)$

where $t_* = Dt$ and \hat{C}_y is an affine-equivariant scatter matrix defined by y_i , i = 1, ..., n. To see this, note that for Y = DX

$$D_n(\boldsymbol{t}_*; \hat{\mathbf{C}}_y) = \binom{n}{2}^{-1} \sum_{i < j} I\{(\boldsymbol{y}_i - \boldsymbol{t}_*)^T \hat{\mathbf{C}}_y^{-1} (\boldsymbol{y} - \boldsymbol{t}_*) \le 0\}$$
$$= \binom{n}{2}^{-1} \sum_{i < j} I\{(\boldsymbol{x}_i - \boldsymbol{t})^T \mathbf{D}^T \hat{\mathbf{C}}_y^{-1} \mathbf{D}(\boldsymbol{x}_i - \boldsymbol{t}) \le 0\}.$$

Bivariate Normal, $\rho = 0.6$, n = 100

Bivariate Normal, $\rho = 0.6$, n = 100

Bivariate Normal, $\rho = 0.8$, n = 100

Bivariate Normal, $\rho = 0.8$, n = 100

Tampere, Finland

Computation of the Contours

- Power Mac G5, 1.8 GHz, 1GB Memory, 900 MHz Bus Spd
- Each depth function was calculated at each of 10000 equally-spaced points in the grid $[-2.5, 2.5]^2$.

Depth	Time		
Spherical	29.5 seconds		
Elliptical	86.5 seconds		
Simplicial 1	3.47 hours		
Simplicial 2	16.5 seconds		

Multivariate Median

• The elliptical depth median is defined as the point, or region of points, which maximize the elliptical depth function, i.e.

$$\boldsymbol{\theta} = \operatorname*{arg\,max}_{\boldsymbol{t}} D(\boldsymbol{t}; \mathbf{C}_F).$$

Similarly, the sample spherical median is defined by

$$\hat{\boldsymbol{\theta}} = rg\max_{\boldsymbol{t}} D_n(\boldsymbol{t}; \hat{\mathbf{C}}_x).$$

 The sample elliptical depth median defined above is affine equivariant. This follows from the fact that the depth function is affine invariant. Let *F* be an absolutely continuous distribution on \mathbb{R}^d with bounded density *f* and scatter matrix \mathbf{C}_F . If $\hat{\mathbf{C}}_x$ is an affine-equivariant scatter matrix such that $\hat{\mathbf{C}}_x \to \mathbf{C}_F a.s.$, then the following results hold:

1. The sample elliptical depth $D_n(t; \hat{\mathbf{C}}_x)$ is uniformly consistent in estimating $D(t; \mathbf{C})$, i.e.,

$$\sup_{\boldsymbol{t}\in\mathbb{R}^d} |D_n(\boldsymbol{t};\hat{\mathbf{C}}_x) - D(\boldsymbol{t};\mathbf{C})| \xrightarrow{a.s.} 0 \quad as \ n\to\infty.$$

2. Furthermore, if *f* does not vanish in a neighborhood of θ and if $D(\cdot; \mathbf{C}_F)$ is uniquely maximized at θ , then $\hat{\theta}_n \xrightarrow{a.s.} \theta$, as $n \to \infty$.

Notes on the Median

- Note that this objective function $D_n(t; \hat{\mathbf{C}}_x)$ is a step function and traditional gradient-based methods are not feasible.
- Elmore, Hettmansperger, and Xuan (2004) discuss a transformation-retransformation procedure which leads to an affine-invariant spherical depth-based median. The elliptical depth essentially circumvents the need to move between the two spaces, however, the two depth functions are similar.

Example One

- The data set was originally presented in Andrews and Herzberg (1985) and presented again in Hettmansperger and Randles (2002).
- Seven skull measurements were made on a sample (n = 50) from the *Macropus giganteus* species of grey kangaroo.
- The measurements include basilar length, occipitonasal length, nasal length, nasal width, crest width, mandible width and mandible length.
- We computed the component sample mean (\bar{X}) and median ($\hat{\theta}_c$), an affine-equivariant median ($\hat{\theta}_{HR}$) given in Hettmansperger and Randles (2002), the spherical median ($\hat{\theta}_{1_a}$ and $\hat{\theta}_{1_b}$), and the elliptical median ($\hat{\theta}_2$).

Example One (cont.)

	Dimension						
Stat	Ι	П	Ш	IV	V	VI	VII
$ar{X}$	1491.4	1585.1	702.9	245.4	110.1	135.0	193.8
$\hat{oldsymbol{ heta}}_{c}$	1490.5	1570.0	700.5	243.5	113.0	136.0	194.5
$\hat{oldsymbol{ heta}}_{HR}$	1477.4	1572.3	694.9	243.8	111.7	134.5	192.3
$\hat{oldsymbol{ heta}}_{1_a}$	1503.6	1578.0	703.3	245.8	104.9	134.7	197.7
$\hat{oldsymbol{ heta}}_{1_b}$	1478.4	1572.3	693.4	243.3	115.0	134.2	191.8
$\hat{oldsymbol{ heta}}_2$	1480.5	1575.5	695.8	246.3	110.8	134.8	192.2

Example Two

Treatment	CO_2	Halothane
1	high	Ν
2	low	Ν
3	high	Y
4	low	Y

The four treatment combinations for the sleeping-dog dataset as given

in Johnson and Wichern (1992). Nineteen dogs were used in the study.

Example Two – Medians

Conclusions and Future Work

- We proposed an new statistical depth function which satisfies all of the desirable properties of a legitimate depth function *and* it is easy to compute in any dimension.
- We develop an affine-equivariant estimator of multivariate locationa based on this test.
- Completing the proofs and finding the asymptotic distribution of the test statistic.
- A multi-sample, multivariate test for location parameter.

Key References

Elmore, R.T., Hettmansperger, T.P., Xuan, F. (2004). Spherical data depth and a multivariate median. *submitted*.

Hettmansperger, T.P. and Randles, R.H. (2002). A practical affine equivariant multivariate median. *Biometrika*, **89**, 851 – 860.

Liu, R.Y. (1990). On a notion of data depth based on random simplices. *Ann. Statist.*, **18**, 405 – 414.

Liu, R.Y., Parelius, J.M., and Singh, K. (1999). Multivariate analysis by data depth: Descriptive statistics, graphics, and inference (with discussion). *Ann. Statist.*, **27**, 783 – 858.

Tyler, D.E. (1987). A distribution-free *M*-estimator of multivariate scatter. *Ann. Statist.*, **15**, 234 – 251.

Zou, Y. and Serfling, R. (2000). General notions of statistical depth functions. *Ann. Statist.*, **28**,461 – 482.