An Affine-Invariant Data Depth Based on Random Hyperellipses

Ryan T. Elmore
Ryan.Elmore@anu.edu.au
ANU $\xrightarrow{p r}$ Colorado State University*
8 - 10 June 2005

This is joint work with Thomas P. Hettmansperger, Fengjuan Xuan, and Bruce Brown.
*- Note that $\xrightarrow{p r}$ denotes convergence in "profession".

Outline

- What is data depth?
- Elliptical data depth
- Properties of elliptical depth
- Illustrations
- Applications
- Example(s)

Data Depth

Zuo and Serfling (2000) informal definition:
"...for a distribution P on \mathbb{R}^{d}, a corresponding depth function is any function $D(x ; P)$ which provides a P-based center-outward ordering of points $\boldsymbol{x} \in \mathbb{R}^{d}$."

- Monotonicity of $D(\cdot ; P)$ relative to deepest point.
- Affine invariance of the depth function.
- Maximum depth at the "center" of the distribution.
- $D(\boldsymbol{x} ; P) \rightarrow 0$ as $\|\boldsymbol{x}\| \rightarrow \infty$

Data Depth (cont.)

- Liu, Parelius, and Singh (1999) provide a comprehensive overview of data depths, their properties, and potential applications.
- Data depth functions are a nonparametric, exploratory data-analytic technique for describing multivariate data sets, e.g. $D D$-plots or sunburst plots.
- Used to quantify a point or region in high dimensions as a single-dimensional quantity.
- Generally, data depths provide a center-outward ranking of the data; this leads to rank-based inferential procedures.

Data Depth (cont.)

- Examples: Mahalanobis depth, Mahalanobis (1936); Halfspace depth, Tukey (1975); Oja’s depth, Oja (1983); Simplicial depth, Liu (1990); Spherical depth, Elmore et al. (2004).
- Most of the current depth functions are computationally intractable for high dimensions.
- For example, algorithms for computing the simplicial depth are of order $O\left(n^{d+1}\right)$; however, Rousseeuw and Ruts (1996) describe an algorithm that reduces the order to $O\left(n^{d-1} \log n\right)$.

Sample Simplicial Depth

Sample Spherical Depth

Elliptical Data Depth

- Let \boldsymbol{X} and \boldsymbol{Y} be two independent random vectors having common probability distribution function F on $\mathbb{R}^{d}, d \geq 1$.
- The elliptical depth function is defined in terms of the distribution F at a point $t \in \mathbb{R}^{d}$ by

$$
D\left(\boldsymbol{t} ; \mathbf{C}_{F}\right)=P_{F}[\boldsymbol{t} \in e(\boldsymbol{X}, \boldsymbol{Y})]
$$

where the region $e(\boldsymbol{X}, \boldsymbol{Y})$ denotes the unique, closed random hyperellipse formed by $\boldsymbol{X}, \boldsymbol{Y}$, and the symmetric, positive-definite matrix \mathbf{C}_{F}.

- The elliptical region is defined by

$$
e(\boldsymbol{X}, \boldsymbol{Y})=\left\{\boldsymbol{t}:(\boldsymbol{X}-\boldsymbol{t})^{T} \mathbf{C}_{F}^{-1}(\boldsymbol{Y}-\boldsymbol{t}) \leq 0\right\} .
$$

Theorems

1. If F is an absolutely continuous distribution on \mathbb{R}^{d}, then $D\left(\boldsymbol{x} ; \mathbf{C}_{F}\right)$ is continuous with respect to \boldsymbol{x}.

Theorems

1. If F is an absolutely continuous distribution on \mathbb{R}^{d}, then $D\left(\boldsymbol{x} ; \mathbf{C}_{F}\right)$ is continuous with respect to \boldsymbol{x}.
2. If F is an absolutely continuous distribution on \mathbb{R}^{d} and it is angularly symmetric about the $\boldsymbol{\theta}$, then $D\left(\boldsymbol{\theta} ; \mathbf{C}_{F}\right)=1 / 2$.

Theorems

1. If F is an absolutely continuous distribution on \mathbb{R}^{d}, then $D\left(\boldsymbol{x} ; \mathbf{C}_{F}\right)$ is continuous with respect to x.
2. If F is an absolutely continuous distribution on \mathbb{R}^{d} and it is angularly symmetric about the $\boldsymbol{\theta}$, then $D\left(\boldsymbol{\theta} ; \mathbf{C}_{F}\right)=1 / 2$.
3. If F is absolutely continuous and angularly symmetric about the origin, then $D\left(\alpha \boldsymbol{x} ; \mathbf{C}_{F}\right)$ is a monotone nonincreasing in $\alpha \geq 0$ for all $x \in \mathbb{R}^{d}$.

Theorems

1. If F is an absolutely continuous distribution on \mathbb{R}^{d}, then $D\left(\boldsymbol{x} ; \mathbf{C}_{F}\right)$ is continuous with respect to \boldsymbol{x}.
2. If F is an absolutely continuous distribution on \mathbb{R}^{d} and it is angularly symmetric about the $\boldsymbol{\theta}$, then $D\left(\boldsymbol{\theta} ; \mathbf{C}_{F}\right)=1 / 2$.
3. If F is absolutely continuous and angularly symmetric about the origin, then $D\left(\alpha \boldsymbol{x} ; \mathbf{C}_{F}\right)$ is a monotone nonincreasing in $\alpha \geq 0$ for all $x \in \mathbb{R}^{d}$.
4. For any distribution function F on \mathbb{R}^{d} and $x \in \mathbb{R}^{d}$, the elliptical depth function vanishes at infinity, i.e. $\sup _{\|\boldsymbol{x}\| \geq M} D\left(\boldsymbol{x} ; \mathbf{C}_{F}\right) \rightarrow 0$ as $M \rightarrow \infty$.

Empirical Version

- Let $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}$ be a random sample from the distribution F.
- We define the sample elliptical depth function at a point t as

$$
D_{n}\left(\boldsymbol{t} ; \mathbf{C}_{F}\right)=\binom{n}{2}^{-1} \sum_{i<j} I\left(\boldsymbol{t} \in e\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right)
$$

where $I(A)$ is the indicator function of the event A.

- It is easy to see that even the most naïve algorithm is of order $O\left(d n^{2}\right)$.
- In practice, the matrix \mathbf{C}_{F} is usually unknown and must be estimated.

Order of Computation

Empirical Version (cont.)

- The more practical estimator given by

$$
D_{n}\left(\boldsymbol{t} ; \hat{\mathbf{C}}_{x}\right)=\binom{n}{2}^{-1} \sum_{i<j} I\left(\boldsymbol{t} \in e_{n}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right)
$$

where

$$
e_{n}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\left\{\boldsymbol{t}:\left(\boldsymbol{x}_{i}-\boldsymbol{t}\right)^{T} \hat{\mathbf{C}}_{x}^{-1}\left(\boldsymbol{x}_{j}-\boldsymbol{t}\right) \leq 0\right\}
$$

for some affine-equivariant estimator of the scatter matrix, \mathbf{C}_{F}.

- Spherical depth is a special case of elliptical depth with \mathbf{I}_{d} is used wherever a \mathbf{C}_{F} is given above.

Sample Elliptical Depth

Sample Elliptical Depth

Scatter Matrices

- A data-determined, symmetric, positive-definite matrix $\hat{\mathbf{B}}_{x}$ based on \boldsymbol{x}_{i} for $i=1,2, \ldots, n$ is said to be an affine equivariant scatter matrix if and only if whenever each \boldsymbol{x}_{i} is transformed by a fixed, nonsingular $d \times d$ matrix \mathbf{D} into $\mathbf{D} \boldsymbol{x}_{i}$, the resulting $\hat{\mathbf{B}}_{\mathbf{D} x}$ matrix satisfies

$$
\mathbf{D}^{T} \hat{\mathbf{B}}_{\mathbf{D} x}^{-1} \mathbf{D}=c_{0} \hat{\mathbf{B}}_{x}^{-1}
$$

where c_{0} is a positive scalar that may depend on \mathbf{D} and the \boldsymbol{x}_{i} 's.

- Examples: Sample covariance matrix and Tyler's (1987) M-estimator of scatter.

Tyler's Scatter Matrix

- Tyler's scatter matrix $\left(\hat{\mathbf{A}}_{x}^{T} \hat{\mathbf{A}}_{x}\right)^{-1}$ is defined so that $\hat{\mathbf{A}}_{x}$ satisfies

$$
\frac{1}{n} \sum_{i=1}^{n}\left(\frac{\hat{\mathbf{A}}_{x}\left(\boldsymbol{x}_{i}-\boldsymbol{\theta}\right)}{\left\|\hat{\mathbf{A}}_{x}\left(\boldsymbol{x}_{i}-\boldsymbol{\theta}\right)\right\|}\right)\left(\frac{\hat{\mathbf{A}}_{x}\left(\boldsymbol{x}_{i}-\boldsymbol{\theta}\right)}{\left\|\hat{\mathbf{A}}_{x}\left(\boldsymbol{x}_{i}-\boldsymbol{\theta}\right)\right\|}\right)^{T}=\frac{1}{d} \mathbf{I}_{d}
$$

where \mathbf{I}_{d} is the d-dimensional identity matrix and $\boldsymbol{\theta}$ is a measure of center.

- Tyler argues that his scatter matrix is the "most robust" estimator of \mathbf{C}, the scatter matrix of an elliptical distribution.
- He shows that $\left(\hat{\mathbf{A}}_{x}^{T} \hat{\mathbf{A}}_{x}\right)^{-1}$ is strongly consistent in estimating \mathbf{C} when sampling from a continuous distribution.

Theorem

The two elliptical depth measures defined in equations above are affine invariant. That is, for any nonsingular matrix \mathbf{D}, we have

$$
\begin{aligned}
D_{n}\left(\boldsymbol{t} ; \mathbf{C}_{F}\right) & =D_{n}\left(\boldsymbol{t}_{*} ; \mathbf{D C}_{F} \mathbf{D}^{T}\right), \text { and } \\
D_{n}\left(\boldsymbol{t} ; \hat{\mathbf{C}}_{x}\right) & =D_{n}\left(\boldsymbol{t}_{*} ; \hat{\mathbf{C}}_{y}\right)
\end{aligned}
$$

where $\boldsymbol{t}_{*}=\mathrm{D} \boldsymbol{t}$ and $\hat{\mathbf{C}}_{y}$ is an affine-equivariant scatter matrix defined by $\boldsymbol{y}_{i}, i=1, \ldots, n$. To see this, note that for $\boldsymbol{Y}=\mathbf{D} \boldsymbol{X}$

$$
\begin{aligned}
D_{n}\left(\boldsymbol{t}_{*} ; \hat{\mathbf{C}}_{y}\right) & =\binom{n}{2}^{-1} \sum_{i<j} I\left\{\left(\boldsymbol{y}_{i}-\boldsymbol{t}_{*}\right)^{T} \hat{\mathbf{C}}_{y}^{-1}\left(\boldsymbol{y}-\boldsymbol{t}_{*}\right) \leq 0\right\} \\
& =\binom{n}{2}^{-1} \sum_{i<j} I\left\{\left(\boldsymbol{x}_{i}-\boldsymbol{t}\right)^{T} \mathbf{D}^{T} \hat{\mathbf{C}}_{y}^{-1} \mathbf{D}\left(\boldsymbol{x}_{i}-\boldsymbol{t}\right) \leq 0\right\}
\end{aligned}
$$

Bivariate Normal, $\rho=0.6, n=100$

Spherical Depth

Simplicial Depth

Bivariate Normal, $\rho=0.6, n=100$

Elliptical Depth: Covariance

Elliptical Depth: Tyler's Matrix

Bivariate Normal, $\rho=0.8, n=100$

Spherical Depth

Simplicial Depth

Bivariate Normal, $\rho=0.8, n=100$

Elliptical Depth: Covariance

Elliptical Depth: Tyler's Matrix

Computation of the Contours

- Power Mac G5, 1.8 GHz, 1GB Memory, 900 MHz Bus Spd
- Each depth function was calculated at each of 10000 equally-spaced points in the grid $[-2.5,2.5]^{2}$.

Depth	Time
Spherical	29.5 seconds
Elliptical	86.5 seconds
Simplicial 1	3.47 hours
Simplicial 2	16.5 seconds

Multivariate Median

- The elliptical depth median is defined as the point, or region of points, which maximize the elliptical depth function, i.e.

$$
\boldsymbol{\theta}=\underset{\boldsymbol{t}}{\arg \max } D\left(\boldsymbol{t} ; \mathbf{C}_{F}\right)
$$

Similarly, the sample spherical median is defined by

$$
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{t}}{\arg \max } D_{n}\left(\boldsymbol{t} ; \hat{\mathbf{C}}_{x}\right) .
$$

- The sample elliptical depth median defined above is affine equivariant. This follows from the fact that the depth function is affine invariant.

Consistency Conjecture

Let F be an absolutely continuous distribution on \mathbb{R}^{d} with bounded density f and scatter matrix \mathbf{C}_{F}. If $\hat{\mathbf{C}}_{x}$ is an affine-equivariant scatter matrix such that $\hat{\mathbf{C}}_{x} \rightarrow \mathbf{C}_{F}$ a.s., then the following results hold:

1. The sample elliptical depth $D_{n}\left(\boldsymbol{t} ; \hat{\mathbf{C}}_{x}\right)$ is uniformly consistent in estimating $D(\boldsymbol{t} ; \mathbf{C})$, i.e.,

$$
\sup _{\boldsymbol{t} \in \mathbb{R}^{d}}\left|D_{n}\left(\boldsymbol{t} ; \hat{\mathbf{C}}_{x}\right)-D(\boldsymbol{t} ; \mathbf{C})\right| \xrightarrow{\text { a.s. }} 0 \text { as } n \rightarrow \infty .
$$

2. Furthermore, if f does not vanish in a neighborhood of θ and if $D\left(\cdot ; \mathbf{C}_{F}\right)$ is uniquely maximized at $\boldsymbol{\theta}$, then $\hat{\boldsymbol{\theta}}_{n} \xrightarrow{\text { a.s. }} \boldsymbol{\theta}$, as $n \rightarrow \infty$.

Notes on the Median

- Note that this objective function $D_{n}\left(\boldsymbol{t} ; \hat{\mathbf{C}}_{x}\right)$ is a step function and traditional gradient-based methods are not feasible.
- Elmore, Hettmansperger, and Xuan (2004) discuss a transformation-retransformation procedure which leads to an affine-invariant spherical depth-based median. The elliptical depth essentially circumvents the need to move between the two spaces, however, the two depth functions are similar.

Example One

- The data set was originally presented in Andrews and Herzberg (1985) and presented again in Hettmansperger and Randles (2002).
- Seven skull measurements were made on a sample ($n=50$) from the Macropus giganteus species of grey kangaroo.
- The measurements include basilar length, occipitonasal length, nasal length, nasal width, crest width, mandible width and mandible length.
- We computed the component sample mean $(\overline{\boldsymbol{X}})$ and median $\left(\hat{\boldsymbol{\theta}}_{c}\right)$, an affine-equivariant median $\left(\hat{\boldsymbol{\theta}}_{H R}\right)$ given in Hettmansperger and Randles (2002), the spherical median ($\hat{\boldsymbol{\theta}}_{1_{a}}$ and $\hat{\boldsymbol{\theta}}_{1_{b}}$), and the elliptical median $\left(\hat{\boldsymbol{\theta}}_{2}\right)$.

Example One (cont.)

Stat	Dimension						
	I III	II	IV	V	VI	VII	
	1491.4	1585.1	702.9	245.4	110.1	135.0	193.8
	1490.5	1570.0	700.5	243.5	113.0	136.0	194.5
	1477.4	1572.3	694.9	243.8	111.7	134.5	192.3
	1503.6	1578.0	703.3	245.8	104.9	134.7	197.7
	1478.4	1572.3	693.4	243.3	115.0	134.2	191.8
	1480.5	1575.5	695.8	246.3	110.8	134.8	192.2

Example Two

Treatment	CO_{2}	Halothane
1	high	N
2	low	N
3	high	Y
4	low	Y

The four treatment combinations for the sleeping-dog dataset as given in Johnson and Wichern (1992). Nineteen dogs were used in the study.

Example Two - Medians

Conclusions and Future Work

- We proposed an new statistical depth function which satisfies all of the desirable properties of a legitimate depth function and it is easy to compute in any dimension.
- We develop an affine-equivariant estimator of multivariate locationa based on this test.
- Completing the proofs and finding the asymptotic distribution of the test statistic.
- A multi-sample, multivariate test for location parameter.

Key References

Elmore, R.T., Hettmansperger, T.P., Xuan, F. (2004). Spherical data depth and a multivariate median. submitted.

Hettmansperger, T.P. and Randles, R.H. (2002). A practical affine equivariant multivariate median. Biometrika, 89, 851-860.

Liu, R.Y. (1990). On a notion of data depth based on random simplices. Ann. Statist., 18, 405-414.

Liu, R.Y., Parelius, J.M., and Singh, K. (1999). Multivariate analysis by data depth:
Descriptive statistics, graphics, and inference (with discussion). Ann. Statist., 27, 783 858.

Tyler, D.E. (1987). A distribution-free M-estimator of multivariate scatter. Ann. Statist., 15, 234 - 251.

Zou, Y. and Serfling, R. (2000). General notions of statistical depth functions. Ann. Statist., 28,461-482.

