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Suppose X  X1, . . . ,XnT iid
Gx|  Fx   where F  1/2,
uniquely.
Let x  x1, . . . ,xnT the realized sample
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Suppose X1, . . . ,Xn iid n,2 with 2
known and prior is n0,02.
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The Bayes estimate (square error loss):
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Lx| summarizes info about  contained
in data.
Lx| updates the prior into the posterior.
Replace Lx| by the distribution of some
rank based quantity, denoted TX, and
use this distribution as a pseudo likelihood.
Let gTx,| denote the pmf of TX,|
evaluated at the realized data x. Call
gTx,| pseudo likelihood or the
T-likelihood.
The Sign statistic:
Suppose Tx,  Ixi  , then the
T-likelihood is determined by B. 5,.
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The T-likelihood estimate

 is a value of 

that maximizes gTx,|.
One of these values,


  medxi, also

solves the R-estimating equation,
Tx,  Ixi    n/2.



Now use gTx,| to update the prior
.
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 The plot of p|Tx, is a segmented
version of the prior.
 The n  1 segments are determined by
the partition of R induced by x1  . . . 
xn.
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Example:
 Generate a sample of size 20 from
n20,52.
 Prior  is n25,1002 (vague)

Data:

Corruption: x19 and x20 were shifted far
to the right.



Consider next theWilcoxon signed rank
statistic and assume underlying
distribution F is symmetric:

TX, 
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where Ri is the rank of |Xi  | among
the absolute values.
The counting form is more convenient:

TX, 
ij

 I Xi  Xj
2  

 ETX,  nn  1/2,
 VarTX,  nn  12n  1/24
 TX, is approx normally distributed.



Recall the sign statistic T-likelihood:
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i

1
2

n
Ixi    xi1

No closed form for the pmf of Wilcoxon.

pi  PTX,  i |  for i  1, . . . ,N  nn  1
2

Then the Wilcoxon T-likelihood is

gTx,|   i0N piIwi    wi1

where w1 . . . wN are the ordered
nn  1/2 pairwise averages xixj

2 i  j.



We need pi for computing the posterior.
 dsignrank in R returns the exact values
 pi can be approximated using the asy
normal dist.
 Edgeworth approx will improve the
approx.
The posterior:

p|Tx, 
 i0N piIwi    wi1

 i0N pi wi
wi1 d

Again the posterior is a segmented version
of  where now the segmentation is
determined by the pairwise averages.



Same data: n20,52 and prior n25,1002
Advantage: many more segments

Recall x  20.48



General Scores:
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where scores ai  ai are generated as
ai  i/n  1 and u is
nondecreasing and square-integrable on
0,1.
Counting form:

TX, 
ij

 aji1  ajiI
Xi  Xj

2  

 ETX,  1
2 ai,

 VarTX,  1
4 ai

2

 TX, is approx normally distributed



Unlike the Wilcoxon statistic with integer
support points, general scores typically
have many more support points. There will
be roughly 2n such points.
The normal approximation works very well
in this case since the distribution of the
score statistic is symmetrically distributed.
Example: normal scores with
u  1 u12  where x is the standard
normal cdf.
Assume a n0,02 prior. Use approx
normality of the scores statistic to
approximate the posterior.
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We sample this posterior using the
Metropolis algorithm.
Apply this to Wilcoxon for comparison:

And compare to original:



A further approximation: linearization of the
statistic
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Then the posterior can be approximated
by:
p | Tx,  exp  n
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With approx Bayes solution:
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But now  must be estimated.
Wilcoxon case: estimate  f 2xdx.
Some combination of:

 Normal prior,
 approximate normality of TX,,
 linearization,
 MCMC methods

is used in extensions to regression.



Example: Simon Newcomb’s speed of
light data

66 measurements in 1882
Deviations from 24,800 nanoseconds
Normal prior n26,1002

1. Wilcoxon (assume symmetry)
2. Traditional Bayes with normal likelihood







Testing: H0 :   0 vs. HA :   0
 Let 0  PH0 is true
 Suppose the mass on HA is spread out
according to the density h.
The marginal distribution of TX, is then
mTx  0gTx,0|0 
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Then the posterior probability
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Example:
The sign statistic Tx,  Ixi  
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Could take  to be n0,02.



Summary:
1. Bayesian perspective can be
incorporated in the semiparametric
location model.
2. This can be combined with the usual
nonparametric rank statistics.
3. Resulting Bayesian R-estimates are
more robust than traditional Bayes
estimates based on specific likelihoods.
4. For general scores we use a normal
approximation to the T-likelihood and
approximate the posterior distribution
using MCMC methods.
5. This general approach can then be
extended to regression models which
include the two-sample location model as
a special case.
6. Testing is also possible.




