Bayesian R-Estimates

Tom Hettmansperger Penn State University

Xiaojiang Zhan Merck

Primary References:
Jeffreys (1998) Theory of Probability, 3rd ed.
Hodges and Lehmann (1963) Ann. Math. Statist.

Motivated by discussions with Jaeyoung Lee, Seoul National University.

Suppose $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ iid
$G(x \mid \theta)=F(x-\theta)$ where $F(\theta)=1 / 2$,
uniquely.
Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$ the realized sample

1. Prior $\pi(\theta)$ on Ω
2. Likelihood $L(\mathbf{x} \mid \theta)=\prod_{i=1}^{n} f\left(x_{i}-\theta\right)$
3. Posterior

$$
p(\theta \mid \mathbf{x})=\frac{L(\mathbf{x} \mid \theta) \pi(\theta)}{\int_{\Omega} L(\mathbf{x} \mid \theta) \pi(\theta) d \theta} \propto L(\mathbf{x} \mid \theta) \pi(\theta)
$$

Suppose X_{1}, \ldots, X_{n} iid $n\left(\theta, \sigma^{2}\right)$ with σ^{2} known and prior is $n\left(\mu_{0}, \sigma_{0}^{2}\right)$. $p(\theta \mid \mathbf{x}) \propto$

$$
\begin{aligned}
& \exp \left\{-\frac{1}{2 \sigma^{2}} \Sigma\left(x_{i}-\theta\right)^{2}\right\} \exp \left\{-\frac{1}{2 \sigma_{0}^{2}} \Sigma\left(\theta-\mu_{0}\right)^{2}\right\} \\
& \exp \left\{-\frac{n}{2 \sigma^{2}}(\theta-\bar{x})^{2}\right\} \exp \left\{-\frac{1}{2 \sigma_{0}^{2}} \Sigma\left(\theta-\mu_{0}\right)^{2}\right\}
\end{aligned}
$$

The Bayes estimate (square error loss):

$$
E(\Theta \mid \mathbf{x})=\left\{\frac{n}{\sigma^{2}} \bar{x}+\frac{1}{\sigma_{0}^{2}} \mu_{0}\right\} /\left\{\frac{n}{\sigma^{2}}+\frac{1}{\sigma_{0}^{2}}\right\}
$$

$L(\mathbf{x} \mid \theta)$ summarizes info about θ contained in data.
$L(\mathbf{x} \mid \theta)$ updates the prior into the posterior. Replace $L(\mathbf{x} \mid \theta)$ by the distribution of some rank based quantity, denoted $T(\mathbf{X}, \theta)$ and use this distribution as a pseudo likelihood.
Let $g(T(\mathbf{x}, \theta) \mid \theta)$ denote the pmf of $T(\mathbf{X}, \theta) \mid \theta$ evaluated at the realized data \mathbf{x}. Call $g(T(\mathbf{x}, \theta) \mid \theta)$ pseudo likelihood or the T-likelihood.

The Sign statistic:
Suppose $T(\mathbf{x}, \theta)=\Sigma I\left(x_{i} \leq \theta\right)$, then the T-likelihood is determined by $B(.5, \theta)$.

$$
g(T(\mathbf{x}, \theta) \mid \theta)=\binom{n}{T(\mathbf{x}, \theta)}\left(\frac{1}{2}\right)^{n}
$$

$$
=\binom{n}{0}\left(\frac{1}{2}\right)^{n} \text { for } \theta<x_{(1)}
$$

$$
\begin{align*}
= & \binom{n}{1}\left(\frac{1}{2}\right)^{n} \text { for } x_{(1)} \leq \theta<x_{(} \tag{2}\\
& \vdots \\
= & \binom{n}{n}\left(\frac{1}{2}\right)^{n} \text { for } x_{(n)} \leq \theta
\end{align*}
$$

The T-likelihood estimate $\widehat{\theta}$ is a value of θ that maximizes $g(T(\mathbf{x}, \theta) \mid \theta)$.
One of these values, $\widehat{\theta}=\operatorname{med}\left(x_{i}\right)$, also solves the R-estimating equation,

$$
T(\mathbf{x}, \theta)=\Sigma I\left(x_{i} \leq \theta\right) \simeq n / 2 .
$$

Now use $g(T(\mathbf{x}, \theta) \mid \theta)$ to update the prior $\pi(\theta)$.

$$
\begin{gathered}
p(\theta \mid T(\mathbf{x}, \theta))=\frac{\binom{n}{0}\left(\frac{1}{2}\right)^{n} \pi(\theta)}{\Sigma_{i=0}^{n}\binom{n}{i}\left(\frac{1}{2}\right)^{n} \int_{x_{(i)}}^{x_{(i+1)}} \pi(\theta) d \theta} \text { for } \theta< \\
\vdots
\end{gathered}
$$

$$
=\frac{\binom{n}{1}\left(\frac{1}{2}\right)^{n} \pi(\theta)}{\Sigma_{i=0}^{n}\binom{n}{i}\left(\frac{1}{2}\right)^{n} \int_{x_{(i)}}^{x_{(i+1)}} \pi(\theta) d \theta} \text { for } x_{(n)} \leq
$$

$$
=\frac{\sum_{i=0}^{n}\binom{n}{i}\left(\frac{1}{2}\right)^{n} I\left(x_{(i)} \leq \theta \in x_{(i+1)}\right)}{\sum_{i=0}^{n}\binom{n}{i}\left(\frac{1}{2}\right)^{n} \int_{x_{(i)}}^{x_{(i+1)}} \pi(\theta) d \theta}
$$

- The plot of $p(\theta \mid T(\mathbf{x}, \theta))$ is a segmented version of the prior.
- The $n+1$ segments are determined by the partition of R induced by $x_{(1)}<\ldots<$ $x_{(n)}$ 。

$$
\begin{aligned}
& E(\Theta \mid \mathbf{X})=\frac{\sum_{i=0}^{n}\binom{n}{i}\left(\frac{1}{2}\right)^{n} \int_{x_{(i)}}^{x_{(i+1)}} \theta \pi(\theta) d \theta}{\sum_{i=0}^{n}\binom{n}{i}\left(\frac{1}{2}\right)^{n} \int_{x_{(i)}}^{x_{(i+1)}} \pi(\theta) d \theta} \\
& E(\Theta \mid \mathbf{X})=\frac{\frac{1}{2} \sum_{i=0}^{n}\binom{n}{i}\left(x_{(i+1)}^{2}-x_{(i)}^{2}\right)}{\sum_{i=0}^{n}\binom{n}{i}\left(x_{(i+1)}-x_{(i)}\right)}=\sum w_{i}\left(\frac{x_{(i)}+x_{(i+1)}}{2}\right) \\
& w_{j}=\binom{n}{j}\left(x_{(j+1)}-x_{(j)}\right) / \sum_{i=0}^{n}\binom{n}{i}\left(x_{(i+1)}-x_{(i)}\right)
\end{aligned}
$$

Example:

- Generate a sample of size 20 from $n\left(20,5^{2}\right)$.
- Prior $\pi(\theta)$ is $n\left(25,100^{2}\right)$ (vague)

B.S. Estimates					L.S. Estimates	
	Mode	Mean	Median	95% C.S.	\bar{x}	95% C.I.
Orig. Data	20.29	20.49	20.41	$(18.34,22.77)$	20.48	$(18.74,22.21)$
Corrupted	20.29	20.53	20.41	$(18.34,23.11)$	21.45	$(18.65,24.25)$

Data:

13.87, 13.99, 16.75, 16.87, 18.01, 18.71, 18.99, 19.37, 19.64, 19.88,
$20.29,20.66,21.68,22.06,22.35,22.49,24.92,25.45,26.40,27.12$
Corruption: $x_{(19)}$ and $x_{(20)}$ were shifted far to the right.

Consider next the Wilcoxon signed rank statistic and assume underlying distribution F is symmetric:

$$
T(\mathbf{X}, \theta)=\sum_{i=1}^{n} R_{i}(\theta) I\left(X_{i} \leq \theta\right)
$$

where $R_{i}(\theta)$ is the rank of $\left|X_{i}-\theta\right|$ among the absolute values.
The counting form is more convenient:

$$
T(\mathbf{X}, \theta)=\sum \sum_{i \leq j} I\left(\frac{X_{i}+X_{j}}{2} \leq \theta\right)
$$

- $E T(\mathbf{X}, \theta)=n(n+1) / 2$,
- $\operatorname{Var} T(\mathbf{X}, \theta)=n(n+1)(2 n+1) / 24$
- $T(\mathbf{X}, \theta)$ is approx normally distributed.

Recall the sign statistic T-likelihood:

$$
g(T(\mathbf{x}, \theta) \mid \theta)=\sum_{i=0}^{n}\binom{n}{i}\left(\frac{1}{2}\right)^{n} I\left(x_{(i)} \leq \theta<x_{(i+1)}\right)
$$

No closed form for the pmf of Wilcoxon.

$$
p_{i}=P(T(\mathbf{X}, \theta)=i \mid \theta) \text { for } i=1, \ldots, N=\frac{n(n+1)}{2}
$$

Then the Wilcoxon T-likelihood is

$$
g(T(\mathbf{x}, \theta) \mid \theta)=\sum_{i=0}^{N} p_{i} I\left(w_{(i)} \leq \theta<w_{(i+1)}\right)
$$

where $w_{(1)} \leq \ldots \leq w_{(N)}$ are the ordered $n(n+1) / 2$ pairwise averages $\frac{x_{i}+x_{j}}{2} i \leq j$.

We need p_{i} for computing the posterior.

- dsignrank in R returns the exact values
- p_{i} can be approximated using the asy normal dist.
- Edgeworth approx will improve the approx.
The posterior:

$$
p(\theta \mid T(\mathbf{x}, \theta))=\frac{\sum_{i=0}^{N} p_{i} I\left(w_{(i)} \leq \theta<w_{(i+1)}\right)}{\sum_{i=0}^{N} p_{i} \int_{w_{(i)}}^{w_{(i+1)}} \pi(\theta) d \theta}
$$

Again the posterior is a segmented version of $\pi(\theta)$ where now the segmentation is determined by the pairwise averages.

Same data: $n\left(20,5^{2}\right)$ and prior $n\left(25,100^{2}\right)$ Advantage: many more segments

	Bayesian Semiparametric Estimates			
	Mode	Mean	Median	95% C.S.
	20.47	20.52	20.46	$(18.47,22.48)$
$\mathcal{N}(18,1)$ prior	19.69	19.29	19.33	$(17.80,20.65)$

Recall $\bar{x}=20.48$

General Scores:

$$
T(\mathbf{X}, \theta)=\sum_{i=1}^{n} a\left[R_{i}(\theta)\right] I\left(X_{i} \leq \theta\right)
$$

where scores $a(i)=a_{i}$ are generated as $a(i)=\varphi[i /(n+1)]$ and $\varphi(u)$ is
nondecreasing and square-integrable on
$(0,1)$.
Counting form:

$$
T(\mathbf{X}, \theta)=\sum_{i \leq j}\left(a_{j-i+1}-a_{j-i}\right) I\left(\frac{X_{(i)}+X_{(j)}}{2} \leq \theta\right)
$$

- $E T(\mathbf{X}, \theta)=\frac{1}{2} \Sigma a_{i}$,
- $\operatorname{Var} T(\mathbf{X}, \theta)=\frac{1}{4} \Sigma a_{i}^{2}$
- $T(\mathbf{X}, \theta)$ is approx normally distributed

Unlike the Wilcoxon statistic with integer support points, general scores typically have many more support points. There will be roughly 2^{n} such points.
The normal approximation works very well in this case since the distribution of the score statistic is symmetrically distributed. Example: normal scores with $\varphi(u)=\Phi^{-1}\left(\frac{u+1}{2}\right)$ where $\Phi(x)$ is the standard normal cdf.
Assume a $n\left(\mu_{0}, \sigma_{0}^{2}\right)$ prior. Use approx normality of the scores statistic to approximate the posterior.
$p\left(\theta \left\lvert\, T(\mathbf{x}, \theta) \propto \exp \left\{-\frac{\left(T(\mathbf{x}, \theta)-\frac{1}{2} \Sigma a_{i}\right)^{2}}{2 \frac{1}{4} \Sigma a_{i}^{2}}\right\} \exp \left\{-\frac{\left(\theta-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}\right.\right.\right.$ We sample this posterior using the Metropolis algorithm.
Apply this to Wilcoxon for comparison:

	MCMC Estimates		
	Mean	Median	95% C.S.
$\mathcal{N}\left(25,100^{2}\right)$ prior	20.48	20.45	$(18.51,22.45)$
$\mathcal{N}(18,1)$ prior	19.29	19.35	$(17.72,20.65)$

And compare to original:

	Bayesian Semiparametric Estimates			
	Mode	Mean	Median	95% C.S.
	20.47	20.52	20.46	$(18.47,22.48)$
$\mathcal{N}(18,1)$ prior	19.69	19.29	19.33	$(17.80,20.65)$

A further approximation: linearization of the statistic

$$
\begin{aligned}
0 & =\frac{T(\mathbf{X}, \widehat{\theta})-\frac{n}{2} \int \varphi(u) d u}{\sqrt{\frac{n}{4} \int \varphi^{2}(u) d u}} \\
& =\frac{T(\mathbf{X}, \theta)-\frac{n}{2} \int \varphi(u) d u}{\sqrt{\frac{n}{4} \int \varphi^{2}(u) d u}}+\tau \sqrt{n}(\widehat{\theta}-\theta)+o_{p}(1)
\end{aligned}
$$

where

$$
\tau^{-1}=\frac{\int \varphi(u) \varphi_{f}(u) d u}{\sqrt{\frac{1}{4} \int \varphi^{2}(u) d u}}
$$

and

$$
\varphi_{f}(u)=-\frac{f^{\prime}\left(F^{-1}(u)\right)}{f\left(F^{-1}(u)\right)}
$$

Wilcoxon: $\varphi(u)=u, \tau^{-1}=\sqrt{12} \int f^{2}(x) d x$

Then the posterior can be approximated by:
$p\left(\theta \left\lvert\, T(\mathbf{x}, \theta) \propto \exp \left\{-\frac{n(\theta-\hat{-})^{2}}{2 \tau^{2}}\right\} \exp \left\{-\frac{\left(\theta-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}\right\}\right.\right.$
With approx Bayes solution:

$$
E(\Theta \mid \mathbf{x}) \simeq\left\{\frac{n \widehat{\theta}}{\tau^{2}}+\frac{1}{\sigma_{0}^{2}} \mu_{0}\right\} /\left\{\frac{n}{\tau^{2}}+\frac{1}{\sigma_{0}^{2}}\right\}
$$

But now τ must be estimated.
Wilcoxon case: estimate $\int f^{2}(x) d x$.
Some combination of:

- Normal prior,
- approximate normality of $T(\mathbf{X}, \theta)$,
- linearization,
- MCMC methods
is used in extensions to regression.

Example: Simon Newcomb's speed of light data

66 measurements in 1882
Deviations from 24,800 nanoseconds
Normal prior $n\left(26,100^{2}\right)$

1. Wilcoxon (assume symmetry)
2. Traditional Bayes with normal likelihood

Figure 2.11: Bayesian semiparametric analysis with $T_{W}(X, \theta)$ and MCMC for Example 2.2.8: Histogram and time series plot of one simulated sequence with the starting point $\theta^{0}=40$. The histogram is based on 15,000 (after discarding the first 5,000) iterations, while the time series plot records all the 20,000 simulations.

Methods	Estimate	95% C.S.	S.E.
Nonparametric (Wilcoxon)	27.5	$(26.0,28.5)$	0.62
Bayesian Semiparametric MCMC (Wilcoxon)	27.4	$(26.0,28.7)$	0.67
Bayesian Jeffreys' Prior	26.2	$(23.6,28.8)$	1.34
Bayesian Normal-Gamma Prior	26.2	$(23.6,28.8)$	1.32

1. Select a starting point θ^{0}, which may be a sample estimate of the location parameter θ, such as the sample median or mean. It could also be the prior mean μ_{0} chosen in the presence of substantive prior knowledge about θ.
2. For $t=1,2, \ldots$:

- Sample a candidate point θ^{*} from a jumping distribution at time t, $J_{t}\left(\theta^{*} \mid \theta^{t-1}\right)$. The jumping distribution must be symmetric; namely, $J_{t}\left(\theta_{a} \mid \theta_{b}\right)=J_{t}\left(\theta_{b} \mid \theta_{a}\right)$ for all θ_{a}, θ_{b} and t. In our simulation, we use a normal distribution $\mathcal{N}\left(\theta^{t-1}, v^{2}\right)$, where the standard deviation v is specified so that a stable and converging sequence can be attained.
- Calculate the ratio of the densities,

$$
r=\frac{p\left(\theta^{*} \mid T_{W}\left(x, \theta^{*}\right)\right)}{p\left(\theta^{t-1} \mid T_{W}\left(x, \theta^{t-1}\right)\right)}
$$

- Set

$$
\theta^{t}= \begin{cases}\theta^{*}, & \text { with probability } \min (r, 1) \\ \theta^{t-1}, & \text { otherwise }\end{cases}
$$

Testing: $H_{0}: \theta=\theta_{0}$ vs. $H_{A}: \theta \neq \theta_{0}$

- Let $\pi_{0}=P\left(H_{0}\right.$ is true $)$
- Suppose the mass on H_{A} is spread out according to the density $h(\theta)$.
The marginal distribution of $T(\mathbf{X}, \theta)$ is then $m(T(\mathbf{x}))=\pi_{0} g\left(T\left(\mathbf{x}, \theta_{0}\right) \mid \theta_{0}\right)+$

$$
\left(1-\pi\left(\theta_{0}\right)\right) \int_{\left(\theta \neq \theta_{0}\right)} g(T(\mathbf{x}, \theta) \mid \theta) h(\theta)
$$

Then the posterior probability

$$
\begin{aligned}
P\left(H_{0} \mid \mathbf{x}\right) & =\frac{\pi_{0} g\left(T\left(\mathbf{x}, \theta_{0}\right) \mid \theta_{0}\right)}{m(T(\mathbf{x}))} \\
& =\left[1+\frac{\left(1-\pi_{0}\right)}{\pi_{0}} \cdot \frac{m(T(\mathbf{x}))}{g\left(T\left(\mathbf{x}, \theta_{0}\right) \mid \theta_{0}\right)}\right]^{-1}
\end{aligned}
$$

Example:

The sign statistic $T(\mathbf{x}, \theta)=\Sigma I\left(x_{i} \leq \theta\right)$

$$
\begin{aligned}
P\left(H_{0} \mid \mathbf{x}\right) & =\frac{\pi_{0} g\left(T\left(\mathbf{x}, \theta_{0}\right) \mid \theta_{0}\right)}{m(T(\mathbf{x}))} \\
& =\left[1+\frac{\left(1-\pi_{0}\right)}{\pi_{0}} \cdot \frac{\sum_{i=0}^{n}\binom{n}{i}\left(\frac{1}{2}\right)^{n} \int_{x_{(i)}}^{x_{(i+1)}} \pi(\theta) d \theta}{\sum_{i=0}^{n}\binom{n}{i}\left(\frac{1}{2}\right)^{n} I\left(x_{(i)} \leq \theta_{0}<x_{(i+1)}\right)}\right.
\end{aligned}
$$

Could take $\pi(\theta)$ to be $n\left(\theta_{0}, \sigma_{0}^{2}\right)$.

Summary:

1. Bayesian perspective can be incorporated in the semiparametric location model.
2. This can be combined with the usual nonparametric rank statistics.
3. Resulting Bayesian R-estimates are more robust than traditional Bayes estimates based on specific likelihoods.
4. For general scores we use a normal approximation to the T-likelihood and approximate the posterior distribution using MCMC methods.
5. This general approach can then be extended to regression models which include the two-sample location model as a special case.
6. Testing is also possible.
