Asymptotics for Extreme Regression Quantiles

J. Jurečková ${ }^{1}$

1 Department of Probability and Statistics, Charles University in Prague, Prague, Czech Republic
Keywords: Regression Quantile, R-estimator, Extreme Regression Quantile.

Abstract

Consider the linear regression model

$$
\begin{equation*}
\mathbf{Y}=\beta_{0} \mathbf{1}_{n}+\mathbf{X} \boldsymbol{\beta}+\mathbf{E} \tag{1}
\end{equation*}
$$

with observations $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$, i.i.d. errors $\mathbf{E}=\left(E_{1}, \ldots, E_{n}\right)^{\prime}$ with an unknown distribution function F, increasing on the set $\{x: 0<F(x)<1\}$, and unknown parameter $\boldsymbol{\beta}^{*}=$ $\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)^{\prime}$. The extreme (maximal) regression quantile is defined as a solution of the linear program $\sum_{i=1}^{n}\left(b_{0}+\mathbf{x}_{i}^{\prime} \mathbf{b}\right)=:$ min under the restrictions $b_{0}+\mathbf{x}_{i}^{\prime} \mathbf{b} \geq Y_{i}, i=1, \ldots, n, b_{0} \in \mathbf{R}, \mathbf{b} \in \mathbf{R}^{p}$. Jurečková and Picek (2005) showed that the extreme regression quantile can be equivalently written in a two step version, starting with an R-estimator $\widetilde{\boldsymbol{\beta}}_{n R}$ of the slope parameters, generated by the score function $\varphi(u)=I\left[u \geq 1-\frac{1}{n}\right]-\frac{1}{n}, 0 \leq u \leq 1$, and then ordering the residuals with respect to $\widetilde{\boldsymbol{\beta}}_{n R}$. Jurečková (2005) showed that, provided the density f of the E_{i} belongs to the domain of attraction of the Gumbel extreme distribution and $n f\left(F^{-1}\left(1-\frac{1}{n}\right)\right) \rightarrow \infty$ as $n \rightarrow \infty$, the slope component $\widetilde{\boldsymbol{\beta}}_{n R}$ of the extreme regression quantile consistently estimates $\boldsymbol{\beta}$ and admits the asymptotic representation

$$
\begin{align*}
& n f\left(F^{-1}\left(1-\frac{1}{n}\right)\right)\left[\widetilde{\boldsymbol{\beta}}_{n R}\left(1-\frac{1}{n}\right)-\boldsymbol{\beta}\right] \tag{2}\\
& =n\left(\sum_{i=1}^{n}\left(\mathbf{x}_{n i}-\overline{\mathbf{x}}_{n}\right)\left(\mathbf{x}_{n i}-\overline{\mathbf{x}}_{n}\right)^{\prime}\right)^{-1} \sum_{j=1}^{n}\left(\mathbf{x}_{n j}-\overline{\mathbf{x}}_{n}\right)\left[a_{n}\left(R_{j}(\mathbf{0}), 1-\frac{1}{n}\right)-\left(1-\frac{1}{n}\right)\right]+o_{p}(1)\left[=O_{p}(1)\right]
\end{align*}
$$

where $R_{j}(\mathbf{0})$ is the rank of Y_{i} among Y_{1}, \ldots, Y_{n} under $\boldsymbol{\beta}=\mathbf{0}, \overline{\mathbf{x}}_{n}=n^{-1} \sum_{i=1}^{n} \mathbf{x}_{n i}$ and

$$
a_{n}(j, \alpha)= \begin{cases}0, & j \leq n \alpha \\ j-n \alpha, & n \alpha \leq j \leq n \alpha+1 \\ 1, & n \alpha+1 \leq j, \quad j=1, \ldots, n\end{cases}
$$

are Hájek's rank scores. If $\mathbf{x}_{n 1}, \ldots, \mathbf{x}_{n n}$ are random, independent of E_{1}, \ldots, E_{n}, and create a random sample from a p-variate distribution function H with expectation $\mathbf{0}$ and satisfying $\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{n i} \mathbf{x}_{n i}^{\prime} \xrightarrow{p}$ \mathbf{Q} as $n \rightarrow \infty$, with a positively definite matrix \mathbf{Q} of order $p \times p$, then the representation (2) changes to the form

$$
\begin{align*}
& n f\left(F^{-1}\left(1-\frac{1}{n}\right)\right)\left[\widetilde{\boldsymbol{\beta}}_{n R}\left(1-\frac{1}{n}\right)-\boldsymbol{\beta}\right] \tag{3}\\
& =\mathbf{Q}^{-1} \sum_{j=1}^{n} \mathbf{x}_{n j}\left[a_{n}\left(R_{j}(\mathbf{0}), 1-\frac{1}{n}\right)-\left(1-\frac{1}{n}\right)\right]+o_{p}(1)\left[=O_{p}(1)\right] .
\end{align*}
$$

The representations (2) and (3) enable to derive the asymptotic distributions of $\left\{n f\left(F^{-1}\left(1-\frac{1}{n}\right)\right)\left[\widetilde{\boldsymbol{\beta}}_{n R}\left(1-\frac{1}{n}\right)-\boldsymbol{\beta}\right]\right\}_{n=1}^{\infty}$ both for the random and nonrandom $\mathbf{x}_{n i}$.

Acknowledgement

The research was partially supported by the Czech Republic Grant 201/05/2340 and by the Research Project MSM 0021620839.

References

J. Hájek (1965). Extension of the Kolmogorov-Smirnov test to regression alternatives. Proc. of Bernoulli-Bayes-Laplace Seminar (L. LeCam, ed.), pp. 45-60. Univ. of California Press.
J. Jurečková (2005). Regression Quantiles and Hájek's Rank Scores. ICORS'2005 (abstract).
J. Jurečková, J. Picek (2005). Two-step regression quantiles. Submitted.
S. Portnoy, J. Jurečková (1999). On extreme regression quantiles. Extremes, 2:3, 227-243.

