Asymptotics for Extreme Regression Quantiles

J. Jurečková¹

¹ Department of Probability and Statistics, Charles University in Prague, Prague, Czech Republic

Keywords: Regression Quantile, R-estimator, Extreme Regression Quantile.

Abstract

Consider the linear regression model

$$\mathbf{Y} = \beta_0 \mathbf{1}_n + \mathbf{X}\boldsymbol{\beta} + \mathbf{E} \tag{1}$$

with observations $\mathbf{Y} = (Y_1, \ldots, Y_n)'$, i.i.d. errors $\mathbf{E} = (E_1, \ldots, E_n)'$ with an unknown distribution function F, increasing on the set $\{x : 0 < F(x) < 1\}$, and unknown parameter $\boldsymbol{\beta}^* = (\beta_0, \beta_1, \ldots, \beta_p)'$. The extreme (maximal) regression quantile is defined as a solution of the linear program $\sum_{i=1}^{n} (b_0 + \mathbf{x}'_i \mathbf{b}) =:$ min under the restrictions $b_0 + \mathbf{x}'_i \mathbf{b} \ge Y_i$, $i = 1, \ldots, n, b_0 \in \mathbf{R}$, $\mathbf{b} \in \mathbf{R}^p$. Jurečková and Picek (2005) showed that the extreme regression quantile can be equivalently written in a two step version, starting with an R-estimator $\boldsymbol{\beta}_{nR}$ of the slope parameters, generated by the score function $\varphi(u) = I[u \ge 1 - \frac{1}{n}] - \frac{1}{n}, \ 0 \le u \le 1$, and then ordering the residuals with respect to $\boldsymbol{\beta}_{nR}$. Jurečková (2005) showed that, provided the density f of the E_i belongs to the domain of attraction of the Gumbel extreme regression quantile consistently estimates $\boldsymbol{\beta}$ and admits the slope component $\boldsymbol{\beta}_{nR}$ of the extreme regression quantile consistently estimates $\boldsymbol{\beta}$ and admits the asymptotic representation

$$nf\left(F^{-1}\left(1-\frac{1}{n}\right)\right)\left[\widetilde{\boldsymbol{\beta}}_{nR}\left(1-\frac{1}{n}\right)-\boldsymbol{\beta}\right]$$

$$\tag{2}$$

$$= n \Big(\sum_{i=1}^{n} (\mathbf{x}_{ni} - \bar{\mathbf{x}}_{n}) (\mathbf{x}_{ni} - \bar{\mathbf{x}}_{n})' \Big)^{-1} \sum_{j=1}^{n} (\mathbf{x}_{nj} - \bar{\mathbf{x}}_{n}) \left[a_n (R_j(\mathbf{0}), 1 - \frac{1}{n}) - (1 - \frac{1}{n}) \right] + o_p(1) \Big[= O_p(1) \Big]$$

where $R_j(\mathbf{0})$ is the rank of Y_i among Y_1, \ldots, Y_n under $\boldsymbol{\beta} = \mathbf{0}, \, \bar{\mathbf{x}}_n = n^{-1} \sum_{i=1}^n \mathbf{x}_{ni}$ and

$$a_n(j,\alpha) = \begin{cases} 0, & j \le n\alpha, \\ j - n\alpha, & n\alpha \le j \le n\alpha + 1, \\ 1, & n\alpha + 1 \le j, \quad j = 1, \dots, n. \end{cases}$$

are Hájek's rank scores. If $\mathbf{x}_{n1}, \ldots, \mathbf{x}_{nn}$ are random, independent of E_1, \ldots, E_n , and create a random sample from a *p*-variate distribution function *H* with expectation **0** and satisfying $\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{ni} \mathbf{x}'_{ni} \xrightarrow{p} \mathbf{Q}$ as $n \to \infty$, with a positively definite matrix **Q** of order $p \times p$, then the representation (2) changes to the form

$$nf\left(F^{-1}(1-\frac{1}{n})\right)\left[\widetilde{\boldsymbol{\beta}}_{nR}(1-\frac{1}{n})-\boldsymbol{\beta}\right]$$
(3)
= $\mathbf{Q}^{-1}\sum_{j=1}^{n} \mathbf{x}_{nj} \left[a_{n}(R_{j}(\mathbf{0}), 1-\frac{1}{n})-(1-\frac{1}{n})\right] + o_{p}(1)\left[=O_{p}(1)\right].$

The representations (2) and (3) enable to derive the asymptotic distributions of $\left\{ nf\left(F^{-1}(1-\frac{1}{n})\right)\left[\widetilde{\boldsymbol{\beta}}_{nR}(1-\frac{1}{n})-\boldsymbol{\beta}\right]\right\}_{n=1}^{\infty}$ both for the random and nonrandom \mathbf{x}_{ni} .

Acknowledgement

The research was partially supported by the Czech Republic Grant 201/05/2340 and by the Research Project MSM 0021620839.

References

- J. Hájek (1965). Extension of the Kolmogorov-Smirnov test to regression alternatives. Proc. of Bernoulli-Bayes-Laplace Seminar (L. LeCam, ed.), pp. 45–60. Univ. of California Press.
- J. Jurečková (2005). Regression Quantiles and Hájek's Rank Scores. ICORS'2005 (abstract).
- J. Jurečková, J. Picek (2005). Two-step regression quantiles. Submitted.
- S. Portnoy, J. Jurečková (1999). On extreme regression quantiles. Extremes, 2:3, 227-243.