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Abstract

A main challenge of data-driven sciences is how to make maximal use of the

progressively expanding databases of experimental datasets in order to keep

research cumulative. We introduce the idea of a modeling-based dataset retrieval

engine designed for relating a researcher’s experimental dataset to earlier work in

the field. The search is (i) data-driven to enable new findings, going beyond the

state of the art of keyword searches in annotations, (ii) modeling-driven, to include

both biological knowledge and insights learned from data, and (iii) scalable, as it is

accomplished without building one unified grand model of all data. Assuming each

dataset has been modeled beforehand, by the researchers or automatically by

database managers, we apply a rapidly computable and optimizable combination

model to decompose a new dataset into contributions from earlier relevant

models. By using the data-driven decomposition, we identify a network of

interrelated datasets from a large annotated human gene expression atlas. While

tissue type and disease were major driving forces for determining relevant

datasets, the found relationships were richer, and the model-based search was

more accurate than the keyword search; moreover, it recovered biologically

meaningful relationships that are not straightforwardly visible from annotations—

for instance, between cells in different developmental stages such as thymocytes

and T-cells. Data-driven links and citations matched to a large extent; the data-

driven links even uncovered corrections to the publication data, as two of the most

linked datasets were not highly cited and turned out to have wrong publication

entries in the database.
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Introduction

Molecular biology, historically driven by the pursuit of experimentally

characterizing each component of the living cell, has been transformed into a

data-driven science [1–6] with just as much importance given to the

computational and statistical analysis as to experimental design and assay

technology. This has brought to the fore new computational challenges, such as

the processing of massive new sequencing data, and new statistical challenges

arising from the problem of having relatively few (n) samples characterized for

relatively many (p) variables—the ‘‘large p, small n’’ problem. High-throughput

technologies often are developed to assay many parallel variables for a single

sample in a run, rather than many parallel samples for a single variable, whereas

the statistical power to infer properties of biological conditions increases with

larger sample sizes. For cost reasons, most labs are restricted to generating datasets

with the statistical power to detect only the strongest effects. In combination with

the penalties of multiple hypothesis testing, the limitations of ‘‘large p, small n’’

datasets are obvious. It is, therefore, not surprising that much work has been

devoted to address this problem.

Some of the most successful methods rely on increasing the effective number of

samples by combining with data from other, similarly designed, experiments, in a

large meta-analysis [7]. Unfortunately, this is not straightforward, either.

Although public data repositories, such as the ones at NCBI in the United States

and the EBI in Europe, serve the research community with ever-growing amounts

of experimental data, they largely rely on annotation and meta-data provided by

the submitter. Database curators and semantic tools such as ontologies provide

some help in harmonizing and standardizing the annotation, but the user who

wants to find datasets that are combinable with her own most often must resort to

searches in free text or in controlled vocabularies, which would need significant

downstream curation and data analysis before any meta-analysis can be done [8].

Ideally, we would like to let the data speak for themselves. Instead of searching

for datasets that have been described similarly, which may not correspond to a

statistical similarity in the datasets themselves, we would like to conduct that

search in a data-driven way, using as the query the dataset itself or a statistical

(rather than a semantic) description of it. This is implicitly done, for example, in

multi-task learning, a method from the machine learning field [9,10], where

several related estimation tasks are pursued together, assuming shared properties

across tasks. Multi-task learning is a form of global analysis, which builds a single

unified model of the datasets. But as the number of datasets keeps increasing and

the amount of quantitative biological knowledge keeps accumulating, the

complexity of building an accurate unified model becomes increasingly

prohibitive.

Addressing the ‘‘large p, small n’’ problem requires taking into account both the

uncertainty in the data and the existing biological knowledge. We now consider

the hypothesized scenario where future researchers increasingly develop

hypotheses in terms of (probabilistic) models of their data. Although far from
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realistic today, a similar trend exists for sequence motif data, which are often

published as Hidden Markov models, for instance in the Pfam database [11].

In this paper, we report on a feasibility study that uses the scenario in which

many experiments have been modeled beforehand, potentially by the researcher

generating the data or automatically by the database storing the model together

with the data. We ask what could be done with these models towards cumulatively

building knowledge from data in molecular biology? Speaking about models

generally and assuming the many practical issues can be solved technically, we

arrive at our answer: we propose creating a modeling-driven dataset retrieval

engine, which a researcher can use for positioning her own measurement data into

the context of the earlier biology. The engine will point out relationships between

experiments in the form of the retrieval results, which is a naturally

understandable interface. The retrieval will be based on data, instead of the state-

of-the-art practice of using keywords and ontologies, which will make unexpected

and previously unknown findings possible. The retrieval will use the models of the

datasets, which, by our assumption above, incorporate the knowledge of the

researchers producing the data about what is important in the data, but the

retrieval will be designed to be more scalable than building one unified grand

model of all data. This also implies that the way the models are utilized needs to

be approximate. Compared to existing data-driven retrieval methods [3,5], whole

datasets, incorporating the experimental designs, will be matched, instead of

individual observations. The remaining question is how to design the retrieval so

that it both reveals the interesting and important relationships and is fast to

compute.

The model we present is a first step towards this goal. We assume that a new

dataset can be explained by a combination of the models for the earlier datasets

and a novelty term. This is a mixture modeling or regression task, in which the

weights can be computed rapidly; the resulting method scales well to large

numbers of datasets, and the speed of the mixture modeling does not depend on

the sizes of the earlier datasets. The largest weights in the mixture model point at

the most relevant earlier datasets. The method is applicable to several types of

measurement datasets, assuming that suitable models exist. Unlike traditional

mixture modeling, we do not limit the form of the mixture components; thus, we

bring in the knowledge built into the stored models of each dataset. We apply this

approach to a large set of experiments from EBI’s ArrayExpress gene expression

database [12], treating each experiment in turn as a new dataset, queried against

all earlier datasets. Under our assumptions, the retrieval results can be interpreted

as studies that the authors of the study generating the query set could have cited,

and we show that the actual citations overlap with the retrieval results. The

discovered links between datasets additionally enable forming a ‘‘hall of fame’’ of

gene expression studies, containing the studies that would have been influential,

assuming the retrieval system existed. The links in the ‘‘hall of fame’’ verify and

complement the citation links: in our study, they revealed corrections to the

citation data, as two frequently retrieved studies were not highly cited and turned

out to have erroneous publication entries in the database. We provide an online
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resource for exploring and searching this ‘‘hall of fame’’: http://research.ics.aalto.

fi/mi/setretrieval.

Earlier work on relating datasets has provided partial solutions along this line,

with the major limitation of being restricted to pairwise dataset comparisons, in

contrast to the proposed approach of decomposing a dataset into contributions

from a set of earlier datasets. Russ and Futschik [13] represented each dataset by

pairwise correlations of genes, and used them to compute dataset similarities. This

dataset representation is ill suited for typical functional genomics experiments, as

a large number of samples is required to sensibly estimate gene correlation

matrices. In addition, it makes the dataset comparison computationally expensive,

as the representation is bulkier than the original dataset. In other works, specific

case-control designs [14] or known biological processes [15] are assumed; we

generalize by using decompositions over arbitrary models.

In summary, our work is the first approach that allows data-driven retrieval of

relevant datasets by decomposing a query dataset into contributions from several

earlier datasets, without requiring specific designs for the earlier datasets or their

models. Unlike existing state-of-the-art retrieval, our approach is not limited to

available dataset annotation. Unlike the Pfam database [11], we not only store

models but use them in retrieval. Unlike existing data-driven approaches [3,5]

that match individual observations, we match whole datasets incorporating their

experimental designs. We fully decompose datasets instead of only computing

pairwise similarities, as in [13], and we allow decomposition over arbitrary models

available for the datasets instead of requiring restricted settings, such as specific

case-control designs [14] or known biological processes [15]. Unlike a

hypothetical approach where a unified model of all data is built, our approach is

fast and scalable to large data.

Combination of Stored Models for Dataset Retrieval

Our goal is to infer data-driven relationships between a new ‘‘query’’ dataset q and

earlier datasets. The query is a dataset of Nq samples fxq
i g

Nq

i~1; in the ArrayExpress

study, the samples are gene expression profiles, with the element xq
ij being

expression of the gene set j in the sample i of the query q, but the setup is general

and applicable to other experimental data, as well. Assume further a dataset

repository of NS earlier datasets, and assume that each dataset sj, j~1, . . . ,NS, has

already been modeled with a model denoted by Msj , later called a base model. The

base models are assumed to be probabilistic generative models, i.e., principled

data descriptions capturing prior knowledge and data-driven discoveries under

specific distributional assumptions. Base models for different datasets may come

from different model families, as chosen by the researchers who authored each

dataset. In this paper, we use two types of base models, which are discrete variants

of principal component analysis (Results), but any probabilistic generative models

can be applied.
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As an illustrative setting, suppose that the dataset repository contains several

datasets arising from base experiments, so that each base experiment studies one

known important biological effect, the experiment has been designed so that the

effect is present in the resulting dataset, and together the base experiments cover

the set of known important biological effects. In the special example case of

metagenomics with known constituent organisms, an obvious set of base

experiments would be the set of genomes of those organisms [16]. A new

experiment could then be expressed as a combination of the base experiments,

and potential novel effects. More generally, such as in a broad gene expression

atlas, it would be hard, if not impossible, to settle on a clean, well-defined, and up-

to-date base set of experiments to correspond to each known effect, so we chose to

use the comprehensive collection of experiments in the current databases as the base

experiments. The problem setting then changes from searching for a unique

explanation of the new experiment to the down-to-earth and realistic task of data-

driven retrieval of a set of relevant earlier experiments, relevant in the sense of

having induced one or more of the known or as-of-yet unknown biological effects.

We combined the earlier datasets by a method that is probabilistic but simple

and fast. We built a combination model for the query dataset as a mixture model of

base distributions p(xjMsj), which have been estimated beforehand. In our

scenario, generative models Msj are available in the repository along with datasets

sj; note that the Msj need not all have the same form. In the mixture model

parameterized by Hq~fhq
j g

NSz1
j~1 , the likelihood of observing the query is

p(fxq
i g

Nq
i~1;Hq)~ P

Nq

i~1
(
XNS

j~1

h
q
j p(xq

i jM
sj))zh

q
NSz1p(xq

i jy)

" #
ð1Þ

where h
q
j is the mixture proportion or weight of the jth base distribution (model of

dataset sj), and h
q
NSz1 is the weight for the novelty term. The novelty is modeled

by a background model y, a broad nonspecific distribution covering overall gene-

set activity across the whole dataset repository. All weights are non-negative andPNSz1
j~1 h

q
j ~1. In essence, this representation assumes that biological activity in

the query dataset can be approximately explained as a combination of earlier

datasets and a novelty term.

The remaining task is to infer the combination model Hq for each query q given

the known models Msj of datasets in the repository. We infer a maximum a

posteriori (MAP) estimate of the weights Hq~fhq
j g

NSz1
j~1 . Alternatively, we could

sample over the posterior, but MAP inference already yielded good results. We

optimize the combination weights to maximize their (log) posterior probability

log p(fhq
j gjfx

q
i g,fM

sjg)! log p(fxq
i gjfM

sjg,fhq
j g)z log p(fhq

j g)

!
X

i

log ½(
XNS
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where p(fhq
j g)~N (0,l{1I) is a naturally non-sparse L2 prior distribution for the

weights with a regularization term l. The cost function (2) is strictly concave

(Text S1), and standard constrained convex optimization techniques can be used

to find the optimized weights. Algorithmic details for the Frank-Wolfe algorithm

and a proof of convergence are provided in Text S1. After computing the MAP

estimate, we rank the datasets for retrieval according to decreasing combination

weights.

This modeling-driven approach has several advantages: 1) the approximations

become more accurate as more datasets are submitted to the repository, naturally

increasing the number of base distributions; 2) it is fast, as only the models of the

datasets are needed, not the large datasets themselves; 3) any model types can be

included, as long as likelihoods of an observed sample can be computed; hence, all

expert knowledge built into the models in the repository can be used; 4) relevant

datasets are not assumed to be similar to the query in any naı̈ve sense, as they only

need to explain a part of the query set; 5) the relevance scores of datasets have a

natural quantitative meaning as weights in the probabilistic combination model.

Scalability

As the size of repositories such as ArrayExpress doubles every two years or even

more rapidly [17], fast computation with respect to the number NS of background

datasets is crucial for future-proof search methods. The first method above

already has a fast linear computation time in NS (Text S1), and an approximate

variant can be run in sublinear time. For that, the model combination will be

optimized only over the k background datasets most similar to the query, which

can be found in time O(N1=(1zE)
S ) where E§0 is an approximation parameter [18],

by suitable hashing functions.

Results

Data-driven retrieval of experiments is more accurate than

standard keyword search

We benchmarked the combination model against state-of-the-art dataset retrieval

by keyword search, in the scenario in which a user queries with a new dataset

against a database of earlier released datasets represented by models. The data

were from a large human gene expression atlas [12], containing 206 public

datasets with 5372 samples that have been systematically annotated and

consistently normalized. To make use of prior biological knowledge, we

preprocessed the data by gene set enrichment analysis [19], representing each

sample by an integer vector telling for each gene set the number of leading edge

active genes [20] (Methods). As base models, we used two model types previously

applied in gene expression analysis [3,6,20,21]: a discrete principal component

analysis method called Latent Dirichlet Allocation [22,23], and a simpler variant

called mixture of unigrams [24] (Text S1). Of the two types, for each dataset, we
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chose the model yielding the larger predictive likelihood (Text S1). For each query

(q), the earlier datasets (sj) were ranked in descending order of the combination

proportion (h
q
j ; estimated from Eq. (2)). That is, base models that explained a

larger proportion of the gene set activity in the query were ranked higher. The

approach yields good retrieval: the retrieval result was consistently better than

with keyword searches applied to the titles and textual descriptions of the datasets

(Fig. 1), which is a standard approach for dataset retrieval from repositories [25].

We checked that the result was not only due to laboratory effects by discarding,

in a follow-up study, all retrieved results coming from the same laboratory. The

mean average precision decreased slightly (from 0:44 to 0:42; precision-recall

curve in Fig. S2) but still supports the same conclusion.

Network of computationally recommended dataset connections

reveals biological relationships

When each dataset in turn is used as a query, the estimated combination weights

form a ‘‘relevance network’’ between datasets (Fig. 2, left), where each dataset is

linked to the relevant earlier datasets (for details, see Methods and an interactive

searchable version at http://research.ics.aalto.fi/mi/setretrieval). The network

structure is dominated but not fully explained by the tissue type. Normal and

neoplastic solid tissues (cluster 1) are clearly separate from cell lines (cluster 2)

and from hematopoietic tissue (cluster 4); the same main clusters were observed

in [12]. Note that the model has not seen the tissue types but has found them

from the data. Upon closer inspection of the clusters, some finer structure is

evident. The muscle and heart datasets (gray) form an interconnected subnetwork

Figure 1. Data-driven retrieval outperforms the state of the art of keyword search on the human gene
expression atlas [12]. Blue: Traditional precision-recall curve where progressively more datasets are
retrieved from left to right. All experiments sharing one or more of the 96 biological categories of the atlas were
considered relevant. In keyword retrieval, either the category names (‘‘Keyword: 96 classes’’) or the disease
annotations (‘‘Keyword: disease’’) were used as keywords. All datasets having at least 10 samples were used
as query datasets, and the curves are averages over all queries.

doi:10.1371/journal.pone.0113053.g001
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in the left edge of the image: nodes near the bottom of the image (downstream)

are explained by earlier (upstream) nodes, which in turn are explained by nodes

even further upstream. As another example, in cluster 4, myeloma and leukemia

datasets are concentrated on the left side of the cluster, whereas the right side

mostly contains normal or infected mononuclear cells.

There is a substantial number of links both across clusters and across tissue

categories. Among the top 30 cross-category links, 25 involve heterogeneous

datasets containing samples from diverse tissue origins. The strongest link

connects GSE6365, a study on multile myeloma, with GSE2113, a larger study

from the same lab, which largely includes the GSE6365 samples. The dataset E-

MEXP-66 is a hub connected to all of the clusters and to nodes in its own cluster

that have different tissue labels. It contains samples studying Kaposi sarcoma, and

it also includes control samples from skin endothelial cells from blood vessels and

the lymph system. Blood vessels and cells belonging to the lymph system are

expected to be present in almost any solid tissue biopsy as well as in samples based

Figure 2. Relevance network of datasets in the human gene expression atlas; data-driven links from the model (left) and citation links (right). Left:
each dataset was used as a query to retrieve earlier datasets; a link from an earlier dataset to a later one means the earlier dataset is relevant as a partial
model of activity in the later dataset. Link width is proportional to the normalized relevance weight (combination weight h

q
j ; only links with h

q
j §0:025 are

shown, and datasets without links have been discarded). Right: links are direct (gray) and indirect (purple) citations. Node size is proportional to the
estimated influence, i.e., the total outgoing weight. Colors: tissue types (six meta tissue types [12]). The node layout was computed from the data-driven
network (details in Methods).

doi:10.1371/journal.pone.0113053.g002
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on blood samples. The strongest link between two homogeneous datasets of

different tissue types connects GSE3307, which compares skeletal muscle samples

from healthy individuals with 12 groups of patients affected by various muscle

diseases, to GSE5392, which measures the transcriptome profiles of the normal

brain and a brain with bipolar disorder. Interestingly, the shortening of telomeres

has been associated both with bipolar disorder [26] and muscular disorder [27].

Treatment of bipolar disorder has been found to also slow down the onset of

skeletal muscle disorder [28].

Next, we investigated ‘‘outlier" datasets where the tissue type does not match

the main tissue types of a cluster, implying that they might reveal commonalities

between cellular conditions across tissues. Cluster 1 contained three outlier

datasets: two hematopoietic datasets and one cell line dataset. The two

hematopoietic outlier datasets are studies related to macrophages and are both

strongly connected to GSE2004, which contains samples from the kidney, liver,

and spleen, sites of long-lived macrophages. The first hematopoietic outlier,

GSE2018, studies bronchoalveolar lavage cells from lung transplant receipts; the

majority of these cells are macrophages. The dataset has strong links to solid tissue

datasets, including GSE2004, and the diverse dataset E-MEXP-66. The second

hematopoietic outlier, GSE2665, is also strongly connected to GSE2004 and

measures the expression of the lymphatic organs (sentinel lymph node) that

contain sinusoidal macrophages and sinusoidal endothelial cells. The third outlier,

E-MEXP-101, studies a colon carcinoma cell line and has connections to other

cancer datasets in cluster 1.

Top dataset links overlap well with citation graph

We compared the model-driven network to the actual citation links (Fig. 2, right)

to find out to what extent the citation practice in the research community matches

the data-driven relationships. Of the top 200 data-driven edges, 50% overlapped

with direct or indirect citation links (see Methods, Text S1 and Fig. S3). Most of

the direct citations appear within the four tissue clusters (Fig. 2, right). The two

cross-cluster citations are not due to the biological similarity of the datasets. The

publication for GSE1869 cites the publication for GSE1159 regarding the method

of differential expression detection. The GSE7007, a study on Ewing sarcoma

samples, cites the study on human mesenchymal stem cells (E-MEXP-168), stating

that the overall gene expression profiles differ between those samples.

We additionally compared the densely connected sets of experiments between

the two networks. In the citation graph, the breast cancer datasets GSE2603,

GSE3494, GSE2990, GSE4922, and GSE1456 form an interconnected clique in

cluster 1, while the three leukocyte datasets GSE2328, GSE3284, and GSE5580

form an interconnected module in cluster 4. In the relevance network, the

corresponding edges for both cliques are among the strongest links for those

datasets, and some of them are among the top 20 strongest edges in the network

(see Table S1 for the list of top 20 edges). There are also densely connected

modules in the relevance network that are not strongly connected in the citation
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graph; when we systematically sought cliques associated with each of the top 20

edges, the strongest edges constitute a clique among E-MEXP-750, GSE6740, and

GSE473, all three studying CD4+ T helper cells, which are an essential part of the

human immune system. Another interesting set is among three T-cell related

datasets in cluster 3. Two of the datasets contain T lymphoblastic leukemia

samples (E-MEXP-313 and E-MEXP-549), whereas E-MEXP-337 reports

thymocyte profiles. Thymocytes are developing T lymphocytes that are matured in

thymus, so this connection is biologically meaningful but not straightforward to

find from dataset annotations. Other strongly connected cliques are discussed in

Text S1.

Analysis of network hubs discovers datasets deserving more

citations

Datasets that have high weights in explaining other datasets have a large weighted

outdegree in the data-driven relevance network, and they are expected to be useful

for many other studies. We checked whether the publications corresponding to

these central hubs are highly cited in the research community. There is a low but

statistically significant correlation between the weighted outdegree of datasets and

their citation counts (Fig. 3; Spearman r(169)~0:2656, pv0:001). Both

Figure 3. Data-driven prediction of usefulness of datasets vs. their citation counts. Manual checks
comparing sets for which the two scores differed revealed inconsistent database records for two datasets; the
blue arrows point to their corrected locations, which are more in line with the data-driven model. Regions A, B,
and C: see text.

doi:10.1371/journal.pone.0113053.g003
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quantities were normalized to avoid bias due to different release times of the

datasets (Methods). We further examined whether the prestige of the publication

venue (measured by impact factor) and the senior author (h-index of the last

author) biased the citation counts, which could explain the low correlation

between the outdegree and the citation count, and the answer was affirmative

(Methods).

We inspected more closely the datasets where the recommended or the actual

citation counts were high (Fig. 3): (A) datasets having low citation counts but high

outdegrees, (B) datasets having both high citation counts and high outdegrees, and

(C) datasets having high citation counts but low outdegrees. We manually checked

the publication records of region A in Gene Expression Omnibus (GEO) [29] and

ArrayExpress [17], to find out why the datasets had low citation counts despite their

high outdegree (data-driven citation recommendations). Two of the eight datasets

had an inconsistent publication record. The blue arrows in Fig. 3 point from their

original position to the corrected position confirmed by GEO and ArrayExpress.

Thus, the data-driven network revealed the inconsistency, and the new positions,

corresponding to higher citation counts, validate the model-based finding that these

datasets are good explainers for other datasets. In region B, most of the papers have

been published in high-impact journals and have a relatively high number of

samples (average sample size of 154) compared to region A (average sample size of

75). One of the eight datasets in the collection is the well-known Connectivity Map

experiment (GSE5258). Lastly, the set C mostly contains unique targeted studies;

there are five studies in the set, which are about leukocytes of injured patients,

Polycomb group (PcG) proteins, senescence, Alzheimer’s disease, and the effect of

cAMP agonist forskolin, a traditional Indian medicine. The studies have been

published in high-impact forums, and a possible reason of their low outdegree is

their specific cellular responses, which are not very common in the atlas.

Discussion

Our main goal was to test the feasibility of the scenario where researchers let the data

speak for themselves when relating new research to earlier studies. The conclusion is

positive: even a relatively straightforward and scalable mixture modeling approach

found both expected relationships such as tissue types, and relationships not easily

found with keyword searches, including cells in different developmental stages or

treatments resembling conditions in other cell types. While biologists could find such

connections by bringing expert knowledge into keyword searches, the ultimate

advantage of the data-driven approach is that it also yields connections beyond

current knowledge, giving rise to new hypotheses and follow-up studies. For example,

it seems surprising that the skeletal muscle dataset GSE6011 is linked also to kidney

and brain datasets. Closer inspection yielded possible partial explanations. Some

kidney areas are rich in blood vessels, lined by smooth muscle. Studies have shown

common gene signatures between skeletal muscle and brain. Abnormal expression of

the protein dystrophin leads to Duchenne muscular dystrophy, exhibited by a
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majority of samples in GSE6011; the brain is another major expression site for

dystrophin [30]. Interestingly, the top three potentially novel datasets, where only less

than 50% of the expression pattern is modelled by earlier datasets (i.e., h
q
NSz1

w0:5),

are GSE2603 (a central breast cancer set), the Connectivity Map data (GSE5258), and

the Burkitt’s Lymphoma set (GSE4475, a cancer fundamentally distinct from other

types of lymphoma). The first two are also recovered by the citation data (as they have

relatively high citation counts and appear in region B in Fig. 3), unlike the third

(which is part of region A in Fig. 3).

Our case study focused on a global analysis of the relevance network obtained

for a representative dataset collection, allowing for comparisons with the citation

graph. The data-driven relationships corresponded to actual citations when

available but were richer and were able to spot out errors in citation links.

Another intended use of the retrieval method is to support researchers in finding

relevant data on a particular topic of interest. We performed a study with

additional skeletal muscle datasets (Table S2) to obtain insights into relationships

among skeletal muscle datasets (Text S1) as well as between skeletal muscle and

other datasets (Text S1 and Table S3), and we showed that the retrieval method

lessens the need for laborious manual searches (Text S1 and Fig. S4).

In this work, we made simplifying assumptions: we only employed two model

families, included biological knowledge only as pre-chosen gene sets, and assumed

all new experiments to be mixtures of earlier ones, instead of finding common

effects in them and combining them either as mixtures or sums. We expect the

results to improve considerably with more advanced future alternatives, with the

research challenge being to maintain scalability. Generalizability of the search

across measurement batches, laboratories, and measurement platforms is a

challenge. Our feasibility study showed that for carefully preprocessed datasets (of

the microarray atlas [12]), data-driven retrieval is useful even across laboratories.

Our method is generally applicable to any single platform, and it takes into

account the expert knowledge built into models of datasets for that platform;

abstraction-based data representations, such as the gene set enrichment

representation we used, have the potential to facilitate cross-platform analyses. As

data integration approaches develop further [31,32], it may be possible to do

searches even across different omics types; here, integration of meta data

(pioneered in a specific semi-supervised framework [33]), several ontologies

(MGED ontology, experimental factor ontology, and ontology of biomedical

investigations [34]) and text mining results [35,36] are obviously useful first steps.

Materials and Methods

Gene expression data

We used the human gene expression atlas [12] available at ArrayExpress under

accession number E-MTAB-62. The data were preprocessed by gene set

enrichment analysis (GSEA) using the canonical pathway collection (C2-CP) from
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the Molecular Signatures Database [19]. Each sample was represented by its top

enriched gene sets [20] (Text S1).

Node layout and normalized relevance weight

The weight matrix contains a weight vector for each query dataset, encoding the

amount of variation in that query explained by each earlier dataset. As query

datasets from early years have only a few even earlier sets available, there is a bias

towards the edges being stronger for the datasets from early years. To remove the

bias we normalized, for the visualizations, the edge strengths of each query data

set by the number of earlier datasets. To visualize the relationship network over

time in Fig. 2, we needed a layout algorithm that positions the datasets on the

horizontal axis highlighting structure and avoiding tangling. We used a cluster-

emphasizing Sammon’s mapping; Sammon’s mapping [37] is a nonlinear

projection method or multidimensional scaling algorithm that aims at preserving

the interpoint distances (here 1{h
q
j ). By clustering the network (with

unsupervised Markov clustering [38]) and increasing between-cluster distances by

adding a constant (c~1) to them, the mapping was made to emphasize clusters

and hence untangle the layout.

Citation graph

Direct citations between dataset-linked publications were extracted from the Web of

Science (26 Jul 2012) and PubMed (17 Oct 2012). We additionally considered two

types of indirect edges. Firstly, we introduced links between datasets whose

publications share common references. This covers, for instance, related datasets

whose publications appeared close in time, making direct citation unlikely. A natural

measure of edge strength is given by the number of shared references. Secondly, we

connect datasets whose articles are cited together, because co-citation is a sign that

the community perceives the articles as related. Here, the edge strength was taken to

be the number of articles co-citing the two dataset publications; these edges

dominate the indirect links in the citation graph. For this analysis, we used citation

data, available for 171 datasets and provided by Thomson Reuters as of 13 September

2012.

Normalization of citation counts and weighted outdegrees

As early datasets have many more papers that can cite them and many more later

datasets that they can help model, both the citation counts and estimated

weighted outdegrees are expected to be upwards biased for them. For Fig. 3, we

normalized the quantities; for each dataset, we normalized the outdegree by the

number of newer datasets and the citation count by the time difference between

publishing the data and the newest dataset in the atlas. To make sure the

normalization did not introduce side effects, we additionally checked that the

same conclusions were reached without the citation count normalization (Fig. S1;
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plotted as stratified subfigures for each 1-year time window). The citation counts

were extracted from PubMed on 16 May 2012.

Citation counts are strongly influenced by external esteem of the

publication forum and the senior author

We stratified the data sets according to the numbers of data-driven citation

recommendations, and studied whether the impact factor of the forum or the h-

index of the last author were predictive of the actual citation count in each

stratum. The strata were the top and bottom quartiles, and for each, we compared

the top and bottom quartiles of the actual citation counts (resulting in comparing

the four corners of Fig. 3). For low outdegree (low recommended citation count),

the h-index was lower for less cited datasets (t11~2:78,p~0:0086; mean value

24:20 vs 54:62), and the impact factor was lower (t7~2:6,p~0:016; mean value

4:38 vs 21:13). Similarly, for the high recommended citation count, the impact

factor for the little-cited datasets was lower (t19~3:99,p~4:0{4; mean value 6:45
vs 21:91), while the difference in h-index was not significant. All t statistics and p-

values were computed by one-sided independent sample Welch’s t-tests. The h-

indices and impact factors were collected from Thomson Reuters Web of

Knowledge and Journal Citation Reports 2011, respectively, on 23rd July 2012.

Supporting Information

Figure S1. Stratified data-driven prediction of usefulness of datasets vs. their

citation counts. Black solid lines mark the boundary for potentially interesting

datasets; the boundaries are set to hold the same percentiles of data as in Fig. 3 in

the main paper. ImpFac stands for Impact Factor of the publication venue.

doi:10.1371/journal.pone.0113053.s001 (TIFF)

Figure S2. Removal of laboratory effects changes the retrieval performance

only slightly, as measured by the precision-recall curves. Original: Replicated

from Fig. 1 of the main paper; Lab. effects removed: all retrieval results from the

same laboratory as the query data have been discarded.

doi:10.1371/journal.pone.0113053. s002 (TIFF)

Figure S3. Overlap of data-driven recommendations with the actual citation

graph: Precision @k for top edges that explain more than 2:5% variation. The

gold standard is the extended citation graph, which is built as the union of edges

from 1) the original directed graph, 2) between any two articles that are cited

together by some other article, and 3) between any two articles that have at least

one common reference.

doi:10.1371/journal.pone.0113053.s003 (TIFF)

Figure S4. Retrieval performance evaluation of the data-driven model against

keyword search in the skeletal muscle case study. The precision-recall curves are

averaged across the 16 skeletal muscle datasets having at least 10 samples.

doi:10.1371/journal.pone.0113053.s004 (TIFF)
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Table S1. Top 20 strongest edges in the relevance network.

doi:10.1371/journal.pone.0113053.s005 (XLSX)

Table S2. ArrayExpress accession numbers of 16 skeletal muscle datasets used

in the retrieval case study in addition to the human gene expression atlas [12].

All datasets were measured with the human genome platform HG-U133A, the

same used in the atlas.

doi:10.1371/journal.pone.0113053.s006 (XLSX)

Table S3. Skeletal muscle queries with at least one retrieved non-skeletal

muscle dataset, sorted according to decreasing precision.

doi:10.1371/journal.pone.0113053.s007 (XLSX)

Text S1. More details on methods and results.

doi:10.1371/journal.pone.0113053.s008 (PDF)
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31. Tripathi A, Klami A, Orešič M, Kaski S (2011) Matching samples of multiple views. Data Min Knowl
Discov 23: 300–321.

Computational Cumulative Biology

PLOS ONE | DOI:10.1371/journal.pone.0113053 November 26, 2014 16 / 17



32. Virtanen S, Klami A, Khan SA, Kaski S (2012) Bayesian group factor analysis. In:, Lawrence N,
Girolami M, , editors. International Conference on Artificial Intelligence and Statistics. Vol. 22 of JMLR
W&CP, pp., 1269–1277.

33. Wise A, Oltvai Z, Bar-Joseph Z (2012) Matching experiments across species using expression values
and textual information. Bioinformatics 28: i258–i264.

34. Zheng J, Stoyanovich J, Manduchi E, Liu J, Stoeckert CJ (2011) Annotcompute: annotation-based
exploration and meta-analysis of genomics experiments. Database: Oxford. doi:10.1093/database/
bar045

35. Jensen LJ, Saric J, Bork P (2006) Literature mining for the biologist: from information retrieval to
biological discovery. Nat Rev Genet 7: 119–129.

36. Rzhetsky A, Seringhaus M, Gerstein M (2008) Seeking a new biology through text mining. Cell 134: 9–
13.

37. Sammon JW (1969) A nonlinear mapping for data structure analysis. IEEE Trans Comput 18: 401–409.

38. van Dongen S (2000) Graph Clustering by Flow Simulation. Ph.D. thesis, University of Utrecht.

Computational Cumulative Biology

PLOS ONE | DOI:10.1371/journal.pone.0113053 November 26, 2014 17 / 17


	Figure 1
	Figure 2
	Figure 3
	Reference 1
	Reference 2
	Reference 3
	Reference 4
	Reference 5
	Reference 6
	Reference 7
	Reference 8
	Reference 9
	Reference 10
	Reference 11
	Reference 12
	Reference 13
	Reference 14
	Reference 15
	Reference 16
	Reference 17
	Reference 18
	Reference 19
	Reference 20
	Reference 21
	Reference 22
	Reference 23
	Reference 24
	Reference 25
	Reference 26
	Reference 27
	Reference 28
	Reference 29
	Reference 30
	Reference 31
	Reference 32
	Reference 33
	Reference 34
	Reference 35
	Reference 36
	Reference 37
	Reference 38

