Simulated Annealing for Aiding Genetic Algorithm in Software

Architecture Synthesis

Outi Sievi-Korte1 \hfill Erkki Mäkinen2, Timo Poranen2 \\
1Department of Software Systems \hfill 2School of Information Sciences, \\
Tampere University of Technology \hfill Computer Science \\
FI-33101 Tampere, Finland \hfill University of Tampere \\
Tel: +358-50-5342813 \hfill Finland \\
outi.sievi-korte@tut.fi \hfill \{erkki.makinen, timo.t.poranen\}@uta.fi

Abstract

Automatic synthesis of software architecture has already been shown to be feasible with genetic algorithms. A natural problem is to augment – if not replace – genetic algorithms with some other search methods in the process of searching good architectures. The present paper studies the possibilities of using simulated annealing for synthesizing software architecture. We start from functional requirements which form a null architecture and consider three quality attributes, modifiability, efficiency and complexity. Synthesis is performed by adding design patterns and architecture styles; the end result being a software architecture which corresponds to the quality attributes. It is concluded that simulated annealing as such does not produce good architectures, but it is useful for speeding up the evolution process by quickly fine-tuning a base solution achieved with a genetic algorithm.

Keywords: search-based software engineering, simulated annealing, software design

1: corresponding author
1. Introduction

The ultimate goal of software engineering is to be able to automatically produce software systems based on their requirements. For the time being, we pass the synthesis of executable programs, and concentrate on the automated derivation of architectural designs of software systems. This is possible because architectural design largely means the application of known standard solutions in a combination that optimizes the quality properties (like modifiability and efficiency) of the software system. These standard solutions are well documented as architectural styles [34] and design patterns [10].

Genetic algorithms (GAs) [20] are shown to be a feasible method for producing software architectures from functional requirements [25, 26, 27, 30]. However, experiments with asexual reproduction [28] would suggest that the crossover operator which is an essential part of GAs might not be critical for producing good architectures, which would support the idea of using a simpler search method. It is then natural to ask if other search methods are capable of producing equally good architectures alone or in co-operation with genetic algorithms. The purpose of the present paper is to study the possibilities of simulated annealing in the process of searching good architectures when functional requirements are given.

Contrary to GAs, simulated annealing (SA) is a local search method which intensively uses the concept of neighborhood, i.e., the set of possible solutions that are near to the current solution. The neighborhood is defined via transformations that change an element of the search space
(here, software architecture) to another. In our application the transformations mean implement-
ing a design pattern or an architectural style.

While GA is already shown to produce reasonable software architectures, it is of great interest
to study whether SA is capable to do the same, as it explores the search space in a completely
different way than GA. An affirmative answer would, of course, give us a new competitive prac-
tical method for producing software architectures. But at the same time, it would be a further
confirmation for the thesis, that software engineering in general – and especially software archi-
tecture design – is fundamentally a combinatorial search problem [9].

As with our GA approach, we begin with the functional requirements of a given system. These
contain the operations defining the functional entities in the system, the relationships between
them, and a null architecture, giving a rough structure for the system. The actual architecture is
achieved by the SA algorithm, which gradually transforms the system by adding (and removing)
design patterns and applying architecture styles. The resulting architecture is evaluated from
three (contradicting) viewpoints: modifiability, efficiency and complexity. The result is given as
a UML class diagram, which depicts the produced architecture for the given system, and contains
all the patterns and other design choices made by the algorithm.

This paper proceeds as follows. In Section 2 we sketch current research in the field of search
algorithms in software design that is relevant for the present paper. In Section 3 we cover the ba-
sics of implementing a SA algorithm and give the algorithmic presentation for our GA, which is
used in our experiments. In Section 4 we introduce our method by defining the input for the SA
algorithm, the transformations and the evaluation function. In Section 5 we present the results
from our experiments, as we examine different parameters for the SA and combining SA with
our GA implementation. In Section 6 we discuss the findings and in Section 7 we give a conclusion of our results.

2. Related Work

Search-based software engineering (SBSE) considers software related topics as combinatorial search problems. Traditionally, testing has been the clearly most studied area inside SBSE [12]. Other well studied areas include software clustering and refactoring [9, 12, 24]. Using meta-heuristic algorithms in the area of software design, and in particular at software architecture design, is quite a novel idea. Only a few studies have been published where the algorithm actually attempts to design something new, rather than re-designing an existing software system. However, approaches dealing with higher level structural units, such as patterns, have recently gained more interest. We will briefly discuss the studies with closest relation to our approach.

Amouei et al. [2] use the GA approach to improve the reusability of software by applying architecture design patterns to a UML model. The authors’ goal is to find the best sequence of transformations, i.e., pattern implementations. Used patterns come from the collection presented by Gamma et al. [10]. From the software design perspective, the transformed designs of the best chromosomes are evolved so that abstract packages become more abstract and concrete packages in turn become more concrete. This approach uses one quality factor (reusability) only, while we use three quality factors, and also a more refined starting point than what is used in our approach.

Bowman et al. [7] study the use of a multi-objective genetic algorithm (MOGA) in solving the class responsibility assignment problem. The objective is to optimize the class structure of a system through the placement of methods and attributes within given constraints. So far they do not
demonstrate assigning methods and attributes “from scratch” (based on, e.g., use cases), but try to find out whether the presented MOGA can fix the structure if it has been modified. Thus, their approach currently works for refactoring only, and is not able to do forward design, which is our aim.

Simons and Parmee [34, 35] take use cases as the starting point for system specification. Data is assigned to attributes and actions to methods, and a set of uses is defined between the two sets. The notion of a class is used to group methods and attributes. Each class must contain at least one attribute and at least one method. Design solutions are encoded directly into an object-oriented programming language. Their approach is on a much lower level than ours, as they only deal with “plain” class structure without considering interfaces or other specialization methods. However, their direction of design is also forward.

Räihä et al. [25] have taken the design of software architecture a step further than Simons and Parmee [35, 36] by starting the design from a responsibility dependency graph. The dependency graph can also be achieved from use cases, but the architecture is developed further than the class distribution of actions and data. A GA is used for the automation of design. In this solution, each responsibility is represented by a supergene and a chromosome is a collection of supergenes. The supergene contains information regarding the responsibility, such as dependencies of other responsibilities, and evaluated parameters such as execution time and variability. Mutations are implemented as adding or removing an architectural design pattern [10] or an interface or splitting or joining class(es). Implemented design patterns are Façade and Strategy, as well as the message dispatcher architecture style [34].
Räihä et al. [30] have also applied GAs in model transformations that can be understood as pattern-based refinements. In MDA (Model Driven Architecture), such transformations can be exploited for deriving a Platform Independent Model from a Computationally Independent Model. The approach uses design patterns as the basis of mutations and exploits various quality metrics for deriving a fitness function. They give a genetic representation of models and propose transformations for them. The results suggest that GAs provide a feasible vehicle for model transformations, leading to convergent and reasonably fast transformation process. In their recent studies, Räihä et al. [26] have added scenarios, which are common in real world architecture evaluations, to evaluate the fitness of their synthesized architectures. Our work differs from the previous work of Räihä et al. by using simulated annealing in addition to GA.

Jensen and Cheng [14] present an approach based on genetic programming (GP) for generating refactoring strategies that introduce design patterns. The authors have implemented a tool, REMODEL, which takes as input a UML class diagram representing the system under design. The system is refactored by applying “mini-transformations”. The encoding is made in tree form (suitable for GP), where each node is a transformation. A sequence of mini-transformations can produce a design pattern; a subset of the patterns specified by Gamma et al. [10] is used to identify desirable mini-transformation sequences. Mutations are applied by simply changing one node (transformation), and crossover is applied as exchanging sub-trees. The QMOOD [4] metrics suite is used for fitness calculations. In addition to the QMOOD metrics, the authors also give a penalty based on the number of used mini-transformations and reward the existence of (any) design patterns. The output consists of a refactored software design as well as the set of steps to transform the original design into the refactored design. This way the refactoring can be done ei-
ther automatically or manually; this decision is left for the software engineer. This approach is very close to those of Räihä et al. and the approach used here, the difference being that Jensen and Cheng have clearly a refactoring point of view, while we attempt upstream synthesis, thus expecting less from the architect and relying more on the algorithm, which makes our problem setting far more complex. Our fitness metrics are also different, as we only reward designs that clearly improve the design – the simple existence of a pattern is not a reason for reward itself.

A higher level approach is studied by Aleti et al. [1], who use AADL models as a basis, and attempt to optimize the architecture with respect to Data Transfer Reliability and Communication Overhead. They use a GA and a Pareto optimal fitness function in their ArcheOptrix tool, but they concentrate on the optimal deployment of software components to a given hardware platform rather than how the components are actually constructed and how they communicate with one another.

Research has also been made on identifying concept boundaries and thus automating software comprehension [11] and re-packaging software [5], which can be seen as finding working subsets of an existing architecture. These approaches are, however, already pushing the boundaries of the concept “software architecture design”. As for different aspects on GAs, the role of crossover operations in genetic synthesis of software architectures is studied by Räihä et al. [27, 28].

SA has been used in the field of search-based software engineering for software refactoring [21, 22, 23] and quality prediction [6]. O’Keeffe and Ó Cinnéide [21, 22, 23] work on the class level and use SA to refactor the class hierarchy and move methods in order to increase the quality of software. Their goal is to minimize unused, duplicated and rejected methods and unused classes, and to maximize abstract classes. The algorithm operates with pure source code, and the
outcome is given as refactored code as well as a design improvement report. This approach is the closest to the one presented here, but it operates on a lower level and backwards (re-engineering), while our approach operates on a higher level architecture and goes forwards in the design process. Similar studies (class level refactoring) have also been made by Seng et al. [32, 33], who use GA as their search algorithm and Harman and Tratt [13], who use hill climbing.

In the area of quality prediction, Bouktif et al. [6] attempt to reuse and adapt quality predictive models, each of which is viewed as a set of expertise parts. The search then aims to find the best subset of expertise parts, which forms a model with an optimal predictive accuracy. The studies using SA are few, and none use this algorithm for such a high-level design problem as designing software architecture from requirements.

3. Simulated Annealing

Simulated annealing is a widely used optimization method for hard combinatorial problems. Principles behind the method were originally proposed by Metropolis et al. [18] and later Kirkpatrick et al. [16] generalized the idea for combinatorial optimization.

The SA algorithm starts from an initial solution which is enhanced during the annealing process by searching and selecting other solutions from the neighborhood of the current solution. There are several parameters that guide the annealing. The search begins with initial temperature t_0 and ends when the temperature t is decreased to the frozen temperature t_f, where $0 \leq t_f \leq t_0$. The temperature gives the probability of choosing solutions that are worse than the current solution. The result of a transformation that worsens the current solution by δ, is accepted to be the new current solution if a randomly generated real i is less than or equal to a limit which depends on
the current temperature t. If a transformation improves the current solution, it is accepted directly without a test.
Algorithm 1 simulatedAnnealing

Input:
Responsibility dependency graph G, null architecture M, initial temperature t_0, frozen temperature t_f, cooling ratio α, and temperature constant r

Output: UML class diagram D;

$initialSolution \leftarrow encode(G, M)$

$initialQuality \leftarrow evaluate(initialSolution)$

$S_1 \leftarrow initialSolution$

$Q_1 \leftarrow initialQuality$

$t \leftarrow t_0$

while $t > t_f$ do

$r_i \leftarrow 0$

while $r_i < r$ do

$S_i \leftarrow transform(S_i)$

$Q_i \leftarrow evaluate(S_i)$

if $Q_i > Q_i$

$S_1 \leftarrow S_i$

$Q_1 \leftarrow Q_i$

else

$\delta \leftarrow Q_i - Q_i$

$p \leftarrow UniformProbability$

if $p < e^{-\delta / t}$

$S_1 \leftarrow S_i$

$Q_1 \leftarrow Q_i$

end if

end if

$r_i \leftarrow r_i + 1$

end while

$t \leftarrow \alpha \cdot t$

end while

$D \leftarrow generateUML(S_1)$

return D
An important parameter of SA is the cooling schedule, i.e., how the temperature is decreased. We use the geometric cooling schedule, in which a constant r is used to determine when the temperature is decreased, and the next temperature is obtained simply by multiplying the current temperature by cooling ratio α ($0 < \alpha < 1$). This is the most frequently used schedule [37]. It was chosen because of its simplicity, and because of the fact that all the classical cooling schedules can be tuned so that they give the same practical temperatures [37].

The SA has been successfully applied for numerous combinatorial optimization problems, for an instructive introduction to the use of SA as a tool for experimental algorithmics, see [3, 15]. In order to determine good parameters for a problem, experimental analysis is often needed. There are also adaptive techniques for detecting the parameters [17]. The SA implementation used in our tests is shown in Algorithm 1.

In Section 5 we compare the present SA and our previous GA implementation [25]. We assume the reader has knowledge of the basic principles of a GA, as given by, e.g., Michalewicz [19]. The GA implementation we have used in our approach is given in Algorithm 2.

In order to be able to fairly compare the implementations, the solutions produced by the two methods should be evaluated by the same quality functions and the initial solutions should be of the same quality. Hence, we use the same method for producing the initial solutions for SA as we have done with GA in [25, 26, 30]. The initial solution is achieved by encoding functional requirements and thus building a base architecture. The base class structure is derived from the null architecture, and the base architecture is achieved by randomly applying a transformation. The same approach for creating several solutions for an initial population is used in our GA imple-
mentation [25, 26, 30], and thus the initial quality is the same for both SA and GA, as they both
use the same evaluation function.

\begin{algorithm}
\caption{geneticAlgorithm}
\begin{algorithmic}
\State \textbf{Input:} formalization of solution, \textit{initialSolution}
\State \textit{population} \leftarrow createPopulation(\textit{initialSolution})
\While{\text{NOT terminationCondition}}
\For{\text{each} \textit{chromosome} \text{in} \textit{population}}
\State $p \leftarrow \text{randomProbability}$
\If{$p > \text{mutationProbability}$}
\State mutate(\textit{chromosome})
\EndIf
\EndFor
\For{\text{each} \textit{chromosome} \text{in} \textit{population}}
\State $cp \leftarrow \text{randomProbability}$
\If{$cp > \text{crossoverProbability}$}
\State addToParents(\textit{chromosome})
\EndIf
\EndFor
\For{\text{each} \textit{chromosome} \text{in} \textit{parents}}
\State \textit{father} \leftarrow \textit{chromosome}
\State \textit{mother} \leftarrow selectNextChromosome(\textit{parents})
\State \textit{offspring} \leftarrow crossover(\textit{father}, \textit{mother})
\State addToPopulation(\textit{offspring})
\State removeFromParents(\textit{father}, \textit{mother})
\EndFor
\For{\text{each} \textit{chromosome} \text{in} \textit{population}}
\State calculatefitness(\textit{chromosome})
\EndFor
\State selectNextPopulation()
\EndWhile
\end{algorithmic}
\end{algorithm}
4. Method

We begin by creating use cases to define the basic functional requirements. Use cases are an intuitive starting point in most software projects, and little domain knowledge is required to define them. Thus, use cases are a natural way to begin eliciting the functional requirements of a system. Use cases can, in turn, be refined into sequence diagrams. The refining process requires some effort from the architect but still quite little domain knowledge and is still fairly intuitive, as the architect simply needs to think how different use cases proceed on operation level. From sequence diagrams it is simple to elicit classes (the participants/owners’ of lifelines) and operations (calls in the diagram). This results in a null architecture, giving a structural view of the functional requirements of the system at hand but not dealing with the quality requirements. The null architecture is encoded to a form that can be processed by the search algorithm in question. The algorithm produces software architecture for the given quality requirements by implementing selected architecture styles and design patterns, and produces a UML class diagram as the result.

4.1. Requirements

We will use two example systems: the control system for a computerized home, called hereafter ehome, and a robot war game simulator, called robo. We will demonstrate building input for the search algorithm in the case of ehome; building input is similar in the case of robo.

Use cases for the ehome system are assumed to consist of, e.g., logging in, changing the room temperature, changing the unit of temperature, making coffee, moving drapes, and playing music. In Figure 1, the coffee making use case has been refined into a sequence diagram.
The use case begins with a message from the user to begin the process of making coffee. We will not consider the technical details of the user interface component here, but simply assume that it receives a command which may be composed of a series of subcommands (such as here, making coffee requires the user to define a series of properties regarding the amount and quality of coffee). As all functionalities related to the process of making coffee cannot be included in the user interface component, we realize that a CoffeeMachine object (component) is needed. The UI thus relays a message to the CoffeeMachine that the coffee machine should be turned on, and then goes on to giving other relevant information. After all data is gathered, we notice that the coffee machine is not capable of producing coffee on its own: it needs to be connected to a water
source. Thus, the WaterManager component is created, and the CoffeeMachine sends it a message to add water. Other use cases can be refined in a similar fashion.

The null architecture in Figure 2 for the ehome system can be mechanically derived from the sequence diagrams. The messages in the sequence diagram now become the operations and the objects/components become the classes. Also, if the need for a data source is detected, such as in this case the WaterState and CoffeeState, they will become attributes in the classes. The null architecture only contains use relationships, as no more detail is given for the algorithm at this point. The null architecture represents the basic functional decomposition of the system. A null architecture for robo (which can be achieved by performing the same steps as did with ehome) is given in Figure 3.

After the operations are derived from the use cases, some properties of the operations can be estimated to support the genetic synthesis, regarding the amount of data an operation needs, frequency of calls, and sensitiveness for variation. For example, it is likely that the coffee machine status can be shown in several different ways, and thus it is more sensitive to variation than ringing the buzzer when the coffee is done. Measuring the position of drapes requires more information than running the drape motor, and playing music quite likely has a higher frequency than changing the password for the system. Relative values for the chosen properties can similarly be estimated for all operations. This optional information, together with operation call dependencies, is included in the information subjected to encoding.
Fig. 2 Null architecture for ehome
4.2. Encoding

Ultimately, there are two kinds of data regarding each operation o_i. Firstly, there is the basic information given as input. This contains the operations $O_i = \{o_{i1}, o_{i2}, \ldots, o_{ik}\}$ depending on o_i, its name n_i, type d_i, frequency f_i, parameter size p_i and variability v_i. Secondly, there is the information regarding the operation o_i’s place in the architecture: the class(es) $C_i = \{C_{i1}, C_{i2}, \ldots, C_{iv}\}$ it belongs to, the interface I_i it implements, the dispatcher D_i it uses, the operations $OD_i \subset O_i$ that
call it through the dispatcher, the design patterns $P_i = \{P_{i1}, P_{i2}, \ldots, P_{im}\}$ it is a part of, and the predetermined null architecture class MC_i. The dispatcher is given a separate field as opposed to other patterns for efficiency reasons.

The null architecture is encoded for the algorithm as a vector $V <ov_1, ov_2, \ldots, ov_n>$ of vectors ov_1, ov_2, \ldots, ov_n. Each vector ov_k, in turn, contains all data for a single operation. Thus, n is the number of operations of a system, and the collection of these operation defining vectors depicts the entire system when collected into one vector V. Figure 4 depicts an operation vector ov_k.

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline
O_1 & n_i & d_i & f_i & p_i & v_i & C_i & I_i & D_i & OD_i & MC_i & P_i \\
\hline
\end{array}
\]

Fig. 4. Operation vector ov_k

4.3. Transformations

An architecture is transformed (i.e., one of its neighbors is found) by implementing architecture styles and design patterns to a given solution. The patterns we have chosen include very high-level architectural styles [34] (message dispatcher and client-server), medium-level design patterns [10] (Façade and Mediator), and low-level design patterns [10] (Strategy, Adapter and Template Method). The transformations are implemented in pairs of introducing a pattern or removing a pattern. This ensures a wider traverse through the search space, as while implementing a pattern might improve the quality of architecture at one point, it might become redundant over the course of development. The dispatcher architecture style makes a small exception to this rule: the actual dispatcher must first be introduced to the system, after which the responsibilities can
communicate through it. The transformations are the following, and each of them has a certain probability with which it is selected:

- introduce/remove message dispatcher
- communicate/remove communication through dispatcher
- introduce/remove server
- introduce/remove Façade
- introduce/remove Mediator
- introduce/remove Strategy
- introduce/remove Adapter
- introduce/remove Template Method.

The legality of applying a pattern is always checked before transformations by giving preconditions. For example, the structure of the Template Method demands that depending operations are in the same class. In addition, a corrective function is added to check that the solution conforms to certain architectural laws, and that no anomalies are brought to the architecture. These laws demand uniform calls between two classes (e.g., through an interface or a dispatcher but not both), and state some basic rules regarding architectures (e.g., no operation can implement more than one interface). The corrective function, for example, discards interfaces that are not used by any class, and adds dispatcher connections between operations in two classes, if such a connection already exists between some operations in those classes.

For example, if the “add Strategy” transformation is chosen, it is checked that the operation o_i is called by some other operation in the same class c and that it is not a part of another pattern already (pattern field is empty). Then, a Strategy pattern instance sp_i is created. It contains in-
formation of the new class(es) \(sc_i \) where the different versions of the operation are placed, and the common interface \(si \) they implement. It also contains information of all the classes and operations that are dependent on \(o_i \), and thus use the Strategy interface. Then, the value in the class field in the vector \(ov_i \) (representing \(o_i \)) would be changed from \(c \) to \(sc_i \), the interface field would be given value \(si \), and the pattern field the value \(sp_i \). Adding other patterns is done similarly. Removing a pattern is done in reverse: the operation placed in a “pattern class” would be returned to its original null architecture class, and the pattern found in the supergene’s pattern field would be deleted, as well as any classes and interfaces related to it.

4.4. Quality Function

In the case of software architecture design, selecting an appropriate evaluation function is particularly difficult, as there is no clear value to measure in the solutions. In real world, evaluation of software architecture is almost always done manually by human designers, and metric calculations are only used as guidelines. Also, two architects rarely agree on a unique quality for certain architecture, as evaluation is bound to be subjective, and different values and backgrounds will influence the outcome of any evaluation process. However, for a search algorithm to be able to evaluate the architecture, a purely numerical quality value must be calculated.

In a fully automated approach, no human interception is allowed, and thus the evaluation function needs to be based on metrics. The selection of metrics may be as arguable as the evaluations of two architects on a single software architecture. The rationale behind the selected metrics in this approach is that they have been widely used and recognized to accurately measure some quality aspects of software architecture. Hence, the metrics are chosen so that they measure qual-
ity aspects that can be seen as “most agreed upon” in the real world, and singular values can be seen as accurate as possible. However, the combination of metrics and multiple optimization is another problem entirely. For many metrics, it may be arguable what quality attribute they measure, and may be seen as measurements for several different quality attributes. Many of these quality attributes, however, are controversial. A perfect example is the selected quality attribute pair: modifiability and efficiency. The problem of multiple optimization is a direct result of the contradictive aims of the two quality attributes: when attempting to optimize one, the quality will decrease in view of the other. In our GA approach we have implemented Pareto optimality [29] to conquer this problem. However, when evaluating the applicability of simulated annealing, we found it more practical to use a single weighted fitness.

The chosen quality function is based on well-known software metrics [8]. These metrics, especially coupling and cohesion, have been used as a starting point for the quality function, and have been further developed and grouped to achieve clear “sub-functions” for modifiability and efficiency, both of which are measured with a positive and negative metric. The biggest modifications to the basic metrics include taking into account the positive effect of interfaces and the dispatcher and client-server architecture styles in terms of modifiability, as well as the negative effect of the dispatcher and server in terms of efficiency. Choosing and grouping the metrics this way makes sure that all architectural decisions are always considered from all viewpoints. Adding a pattern always adds a class or an interface (or both), and is thus considered by complexity. As the calls to an operation are also affected, the change is always also considered positive or negative by both modifiability and efficiency.
Dividing the evaluation function into sub-functions also answers the demands of the real world. Hardly any architecture can be optimized from all quality viewpoints, but some viewpoints are ranked higher than others, depending on the demands regarding the architecture. By separating efficiency and modifiability, which are especially difficult to optimize simultaneously, we can assign a bigger weight to the more desired quality aspect. When w_i is the weight for the respective sub-function s_f_i, the evaluation function $f_i(x)$ for solution x can be expressed as

$$f_i(x) = w_1 \cdot s_f_1 - w_2 \cdot s_f_2 + w_3 \cdot s_f_3 - w_4 \cdot s_f_4 - w_5 \cdot s_f_5.$$

Here, s_f_1 measures positive modifiability, s_f_2 negative modifiability, s_f_3 positive efficiency, s_f_4 negative efficiency and finally s_f_5 measures complexity. All the sub-functions are normalized so that they have the same range. The sub-functions are defined as follows ($|X|$ denotes the cardinality of X):

- $s_f_1 = (|\text{calls to interfaces}| \cdot \sum (\text{variabilities of operations called through interface})) + (|\text{calls through dispatcher}|) \cdot \sum (\text{variabilities of operations called through dispatcher}))$,
- $s_f_2 = |\text{calls between operations in different classes, that do not happen through a pattern}| \cdot \sum (\text{variabilities of called operations}) + |\text{calls between operations in same class}| \cdot \sum (\text{variabilities of called operations}) \cdot 2$,
- $s_f_3 = \sum (|\text{operations dependent of each other within same class}| \cdot \text{parameterSize}) + \sum (|\text{usedOperations in same class}| \cdot \text{parameterSize} + |\text{dependingOperations in same class}| \cdot \text{parameterSize})$,
- $s_f_4 = \sum \text{ClassInstabilities} + (2 \cdot |\text{dispatcherCalls}| + |\text{serverCalls}|) \cdot \sum \text{frequencies} + |\text{calls between operations in different classes}|$,
- $s_f_5 = |\text{classes}| + |\text{interfaces}|.$
It should also be noted, that in sf\textsubscript{1}, most patterns also contain an interface. In sf\textsubscript{3}, “used Operations in same class” means a set of operations in class C, which are all used by the same operation from class D. Similarly, “depending Operations in same class” mean a set of operations in class K, which all use the same operations in class L.

5. Experiments

In this section we present the results from the preliminary experiments done with our approach. Tests were made using the ehome and robo example systems (introduced before). Most of the parameters used in our tests originate from the previous tests reported in [25, 26, 30], and give promising results with the GA approach. The implementation was made with Java 1.5. The tests were run on a DELL laptop with 2,95 GB of RAM and 2,26 GHz processor, running with Windows XP.

All tests were made with the constant r set to 20, and frozen (final) temperature t_f set to 1. The weights for all sub-functions of the quality evaluation function were set to the same, i.e., all weights w\textsubscript{i} were set to 1, as we did not want to favor any particular quality attribute over another, but aimed for balanced designs. Also, by setting the weights to 1 we do not need to consider the effect of the weights in fitness curves. The calculated quality value for each curve is the average value from 20 test runs.

The GA used in the combination experiments is based on our previous implementations [25, 26, 30]. The GA uses the same encoding, transformations (mutations) and quality function as defined here for the SA. The crossover operator is a single-point random crossover. Selection is made with a rank-based roulette wheel method. As this paper concentrates on simulated anneal-
ing, the particularities of the GA implementation are not discussed further here; details can be found in [25, 26, 30].

5.1 Using SA First

The “standard” tests were made with 7500 as starting temperature and 0.05 as cooling ratio. A longer annealing was also experimented with by setting the starting temperature to 10 000 (cooling ratio 0.05), and a faster annealing was tested by setting the cooling ratio to 0.15 (starting temperature 7500). A lower starting temperature had also been tested previously with no obvious benefits [31]. The values were selected based on trial-and-error experiments. However, the results were unsatisfactory for both systems, and there were no significant differences between the results achieved with different SA parameters. The trend of the quality curve for the SA was descending, and the end quality value was worse than the initial value. The standard and high temperature tests for both systems took approximately 10 seconds/ run and the fast annealing tests less than 5 seconds/ run. We then tried to build a base solution with a short and fast annealing (starting temperature 2500 and cooling ratio 0.15), and then continue the search with a genetic algorithm, which ran for 250 generations and had a population of 100 (combination SAGA). This approach did not produce much better results: the SA curves were quite similar than with longer and slower runs, and while the quality curve for the GA portion did increase for a short while, it began to quickly descend drastically. Again, the end quality value was worse than the value for the initial solution. The SAGA test runs took a little less than one minute per run for both systems.
5.2 Using a Combination of GA and SA

As using the SA first did not produce good results, we finally tried using GA for creating a good base solution (again, with 250 generations and a population of 100), and then applying SA (starting temperature 2500, cooling ratio 0.15) for further tuning the solution (combination GASA). In this case, the results were much better. The GA does a good basic work, and the SA is able to further improve the solution very quickly. The runtime for these tests were approximately a bit more than one minute per run for ehome, while the runs for robo were slightly faster.

Figure 5 presents the GA portion and Figure 6 the SA portion of the GASA quality curve for ehome. Figures 7 and 8 present the respective curves for robo. Note that the SA algorithm starts where the GA ends: the difference in the GA end value and SA start value is due to the fact that quality values are not recorded until one round of transformations has already been completed.

As can be seen in Figure 5, the GA begins with a short plummet, after which the quality (fitness) begins to develop steadily. After about 100 generations the fitness appears to stabilize, i.e., the curve is not increasing, and it does not seem likely to further develop. In Figure 6, the SA begins to develop the solution from where the GA left off, and the curve develops rapidly until quite near the end of the SA process.

In Figure 7, depicting the GA portion for the robo system, the GA first plummets similarly as in the curve for ehome, but after it starts ascending, the development seems more rapid and steady than for the ehome, and it appears as if the quality could still increase after the GA finishes. The SA portion of the GASA curve for robo, in Figure 8, seems quite similar to the GA curve at first, but looking at the actual quality values reveals that the SA develops much more
quickly than the GA. In the end the curve has reached a plateau, giving reason to believe that some optimum has been found.

Fig. 5. GA portion of GASA quality curve for ehome
Fig. 6. SA portion of GASA quality curve for ehome

Fig. 7. GA portion of GASA quality curve for robo
6 Discussion

In Section 5 we discussed the quality curves of the experiments made with the SA algorithm. Naturally, the actual UML graphs given as output should also be examined to get a wholesome idea of whether the results with extreme quality values are actually good. In addition to discussing the class diagrams related to the test graphs presented in Section 5 (the GASA tests), we will also discuss the UML graphs achieved when SA was used primarily. The example solutions are given in a simplified format where the design solutions are emphasized, rather than giving the actual class diagrams given by the algorithm, as they would be too space-consuming and difficult to interpret.
6.1 Proposed Architectures with GASA

Using the GASA approach produced very similar solutions for both ehome and robo systems. The solutions were built around the message dispatcher, as nearly all communication between classes (in different null architecture classes) was handled through the message dispatcher. The dispatcher makes the system highly modifiable, as classes do not need to know any details of other classes; they merely send and receive messages through the dispatcher. The architecture is also easy to understand quickly, as the message dispatcher creates a logical center for the system and separates different model classes. However, the message dispatcher creates huge loss in efficiency, as the increased message traffic greatly affects the performance of a system. Thus, it should be used as the primary method for communication or not be used at all, as in the case where it is only partially used the cost in efficiency is bigger than the gain in modifiability.

In addition to the message dispatcher, all solutions achieved with the GASA approach had several instances of the Adapter pattern. The Adapter pattern is easy to apply, as it has very loose preconditions, but it is more costly in terms of efficiency than other patterns. There were usually also several instances of the Template Method pattern, which, in turn, is very low cost in terms of both efficiency (it does not increase the number of calls) and complexity (only one class, no interface). In some cases, however, the algorithm had preferred the Strategy pattern, and there would be many instances of Strategy, while only a few Template Method instances.
Fig. 9. Example architecture for ehome, with GASA algorithm combination

An example solution for ehome achieved with GASA is presented in Figure 9. As can be seen, nearly all connections are handled via the message dispatcher, as only calls from the Main component to Music System and Coffee Machine, and from Music System to Music Files are handled directly between the components. The example also shows that the Template Method is used very much to create low-level modifiability. The ehome is particularly suitable for a message...
dispatcher architecture style, and achieving a high level of message-based communication be-
tween components is desirable.

A similar example solution for robo (also achieved with GASA) is presented in Figure 10. As can be seen, the message dispatcher is used here even more intensely than in the case of ehome, as only connections between CombatEngine and Rules and some connections involving the SimulationObject are not using the message dispatcher, even though the amount of components is larger than in the case of ehome. In this example there are also several Adapter, Template-
Method and Strategy patterns, and the usage of these different patterns is more balanced than in the case of ehome, where the Template Method was the dominating pattern. However, while using the message dispatcher in these proportions is desirable if it is chosen as the primary architec-
ture style, if we consider the type of system the robo is (a framework), in real life a message dis-
patcher would probably not be the best option. All the components are actually tightly linked, and the design should concentrate more on extendibility and the actual functionality of the system. Also, as robo is a gaming application, using the message dispatcher in this extent would probably lead to significant disadvantage in terms of efficiency, which is particularly undesirable when the system needs to respond quickly. The SA (or GA), however, does not have such high-level knowledge of the type of system it is dealing with and bases the design simply on the quality val-
ues, which are achieved from general structural decisions only.
Fig. 10. Example architecture for robo, with GASA algorithm combination
To summarize, using the message dispatcher gives a clear focal point in the solutions, and the full potential of the message dispatcher is used. It should also be pointed out that solutions achieved after only running the GA (i.e., the seeds for the SA) often had the message dispatcher, but its usage was mostly quite minimal, as only a couple of components were communicating via the dispatcher. Thus, the SA algorithm has a significant influence in achieving a much better level of usage in the final solution. In addition, low-level design patterns are used to further fine-tune the solution at class-level.

6.2 Proposed Architectures Based on SA

As mentioned, we also performed tests with only SA and by combining SA to GA by using the SA produced solution as a seed for the GA. The produced solutions were very similar for all cases of the SA (high temperature, standard, and fast annealing) and the SAGA approach. In these cases, the message dispatcher architecture style did not appear in any of the solutions for either system. As for the patterns, the Adapter pattern was clearly the most popular in all the solutions for both systems. For the robo system, there were very few instances of other patterns; only a couple of Template Method or Strategy patterns could be found in the solutions. The solutions for robo seemed quite difficult to understand at a glance; the structure depends greatly on the null architecture, and as all classes are by default given an interface, the minimum amount of classes/interfaces is 44 for the robo system. When the patterns are added (even if only a few) the architecture easily becomes quite complex. The solutions for ehome were significantly easier to understand, as the amount of classes/interfaces that appear “by default” is roughly half the amount of classes for robo system. Curiously enough, there seemed to also be slightly more ap-
pearances of the Strategy and Template Method patterns in the ehome solutions than there were for robo, but the ehome solutions still seemed more understandable.

Thus, it appears that the SA by itself is incapable of introducing solutions that produce delayed reward, such as the message dispatcher architecture style. Also, even if the GA is able to introduce such solutions after being given the seed from the SA, it will take exceptionally long before the reward will overcome the cost, as the SA has already developed the solutions a great deal, and the GA may have to reverse the design process (i.e., apply the “remove” transformations) in order to apply needed changes. The results of merely SA based systems are, thus, unsatisfactory.

7. Conclusions and Future Work

We have presented an approach that uses SA in software architecture synthesis. A null architecture is given as input and architecture styles and design patterns are used as transformations when searching for a better solution in the neighborhood. The solution is evaluated with regard to modifiability, efficiency and complexity. The experimental results achieved with this approach show that SA on its own is not able to produce good quality solutions in terms of quality values or the resulting UML class diagrams. Attempts of improving the SA based solution with GA were also unsuccessful in increasing the quality values. However, when combining GA and SA so that the SA fine-tunes a basic solution achieved with the GA, both the quality values and the class diagrams are very good. Moreover, as SA is significantly faster than the GA, the result was obtained much quicker than would have been possible by using only GA. Thus, it is concluded that while SA is not sophisticated enough to be able to introduce complex alterations that require
several transformations and produce delayed reward, it is able to quickly improve solutions
where the base for such alteration has already been made.

It should be noted though, that SA seems to act very “single-mindedly”. When SA was used
on its own, no solutions contained the message dispatcher architecture style. When SA was used
after the GA, all the solutions used the message dispatcher architecture style very heavily,
whether it was actually desired or not. Thus, it appears that the mechanism in SA that should
prevent it from being stuck to a local optimum is not sufficient to divert the search in the case of
software architecture synthesis.

In our future work we will concentrate on practical issues, and improve our basic implementa-
tion so that patterns (which are currently hardcoded), could be added at will. This will signifi-
cantly increase the search space, but will also make the need for an algorithm to handle a large
amount of patterns even greater. Moreover, the larger the system is and the more computation is
required, the more there will also be need for a way to quicken the evolutionary process.

Acknowledgments

This work was funded by the Academy of Finland (project Darwin). The authors would like to
thank professor Kai Koskimies for helpful discussions.

References

architecture optimization of AADL models, In: Proceedings of ICSE’09 Workshop on Model-
Based Methodologies for Pervasive and Embedded Software, 2009; 61-71.

[10] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

