Countably categorical almost sure theories

Ove Ahlman, Uppsala University

ove@math.uu.se

Countably categorical almost sure theories

Ove Ahlman, Uppsala University

Introduction

A finite graph $\mathcal{G} = (G, E)$ is a finite set G with a binary "edge" relation E.

Generalized to finite relational first order structures $\mathcal{M} = (M, R_1, ..., R_k).$

Introduction

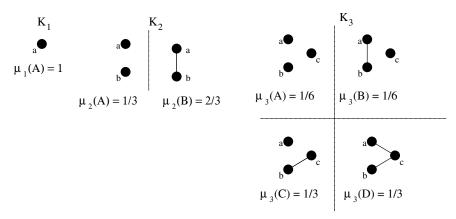
A finite graph $\mathcal{G} = (G, E)$ is a finite set G with a binary "edge" relation E.

Generalized to finite relational first order structures $\mathcal{M} = (M, R_1, ..., R_k).$

For each $n \in \mathbb{N}$ let \mathbf{K}_n be a finite set of finite structures and μ_n a probability measure on \mathbf{K}_n . If φ is a formula let

$$\mu_n(\varphi) = \mu_n(\{\mathcal{N} \in \mathbf{K}_n : \mathcal{N} \models \varphi\})$$

 $\mathbf{K} = \bigcup_{n=1}^{\infty} \mathbf{K}_n \text{ has a convergence law if for each first order formula} \\ \varphi, \lim_{n \to \infty} \mu_n(\varphi) \text{ converges.}$



If we let φ be the formula $\exists x \exists y (xEy)$ then

$$\mu_1(\varphi) = 0$$
 $\mu_2(\varphi) = 2/3$ $\mu_3(\varphi) = 5/6$

 $\lim_{n\to\infty} \mu_n(\varphi)$ converges if the sequence $0, 2/3, 5/6, \dots$ converges.

3

(*) *) *) *)

If for each formula φ

$$\lim_{n\to\infty}\mu_n(\varphi)=1 \quad \text{or} \quad \lim_{n\to\infty}\mu_n(\varphi)=0$$

then **K** has 0 - 1 law.

Countably categorical almost sure theories

э

< □ > < 同 >

< E

If for each formula φ

$$\lim_{n\to\infty}\mu_n(\varphi)=1\quad\text{or}\quad \lim_{n\to\infty}\mu_n(\varphi)=0$$

then **K** has 0 - 1 law.

Let \mathbf{K}_n consisting of all structures with universe $\{1, ..., n\}$ (over a fixed vocabulary) with $\mu_n(\mathcal{N}) = \frac{1}{|\mathbf{K}_n|}$. Fagin (1976) and independently Glebksii et. al.(1969) proved that this \mathbf{K} has a 0-1 law.

3

A B > A B >

< 1 →

Let K consist of all graphs but let μ_n give high probability to sparse (few edges) graphs. Shelah and Spencer (1988) showed that K has a 0-1 law

Let **K** consist of all graphs but let μ_n give high probability to sparse (few edges) graphs. Shelah and Spencer (1988) showed that **K** has a 0 - 1 law

Let **K** consist of all *d*-regular graphs and μ_n a certain, edge depending, probability measure. Haber and Krivelevich (2010) proved that **K**_n has a 0 - 1 law.

Let **K** consist of all graphs but let μ_n give high probability to sparse (few edges) graphs. Shelah and Spencer (1988) showed that **K** has a 0 - 1 law

Let **K** consist of all *d*-regular graphs and μ_n a certain, edge depending, probability measure. Haber and Krivelevich (2010) proved that **K**_n has a 0 - 1 law.

Let **K** consist of all *I*-coloured structures with a vectorspace pregeometry. Koponen (2012) proved a 0-1 law for **K** under both uniform (the normal $\frac{1}{|\mathbf{K}_n|}$) and dimension conditional measure.

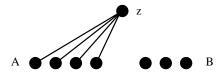
・ 同 ト ・ ヨ ト ・ ヨ ト …

Fagins method of proving 0-1 laws

 \mathcal{N} satisfies the k-extension property φ_k (for graphs) if:

$$A, B \subseteq N, A \cap B = \emptyset, |A \cup B| \le k \Rightarrow \exists z :$$

aEz and $\neg bEz$ for each $a \in A, b \in B$

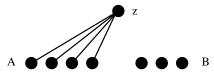


Fagins method of proving 0-1 laws

 ${\cal N}$ satisfies the k-extension property φ_k (for graphs) if:

$$A, B \subseteq N, A \cap B = \emptyset, |A \cup B| \le k \Rightarrow \exists z :$$

aEz and
$$\neg bEz$$
 for each $a \in A, b \in B$



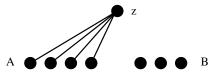
If **K** consist of all structures, then $\lim_{n\to\infty} \mu_n(\varphi_k) = 1$. We say that φ_k is an almost sure property.

Fagins method of proving 0-1 laws

 \mathcal{N} satisfies the k-extension property φ_k (for graphs) if:

$$A, B \subseteq N, A \cap B = \emptyset, |A \cup B| \le k \Rightarrow \exists z :$$

$$aEz$$
 and $\neg bEz$ for each $a \in A, b \in B$



If **K** consist of all structures, then $\lim_{n\to\infty} \mu_n(\varphi_k) = 1$. We say that φ_k is an almost sure property.

$$T_{\mathsf{K}} = \{\varphi : \lim_{n \to \infty} \mu_n(\varphi) = 1\}$$

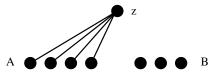
is called the almost sure theory.

Fagins method of proving 0 - 1 laws

 $\mathcal N$ satisfies the k-extension property φ_k (for graphs) if:

$$A, B \subseteq N, A \cap B = \emptyset, |A \cup B| \le k \Rightarrow \exists z :$$

$$aEz$$
 and $\neg bEz$ for each $a \in A, b \in B$



If **K** consist of all structures, then $\lim_{n\to\infty} \mu_n(\varphi_k) = 1$. We say that φ_k is an almost sure property.

$$T_{\mathbf{K}} = \{\varphi : \lim_{n \to \infty} \mu_n(\varphi) = 1\}$$

is called the almost sure theory.

Note: $T_{\mathbf{K}}$ is complete iff \mathbf{K} has a 0-1 law.

Let $\kappa \geq \aleph_0$. For κ -categorical theories completeness is equivalent with not having any finite models.

Theorem

 $T_{\mathbf{K}}$ is \aleph_0 -categorical.

Hence this will prove that **K** has a 0-1 law.

Countably categorical almost sure theories

Ove Ahlman, Uppsala University

Let $\kappa \geq \aleph_0$. For κ -categorical theories completeness is equivalent with not having any finite models.

Theorem

 $T_{\mathbf{K}}$ is \aleph_0 -categorical.

Hence this will prove that \mathbf{K} has a 0-1 law.

Proof.

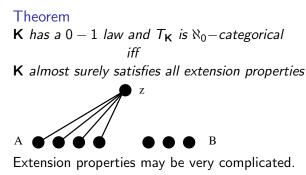
Take $\mathcal{N}, \mathcal{M} \models T_{\mathbf{K}}$. Build partial isomorphisms back and forth by using the extension properties to help.



Ove Ahlman, Uppsala University

The proof method with extension properties has been used in multiple articles proving 0 - 1 laws. In general we get the following

The proof method with extension properties has been used in multiple articles proving 0 - 1 laws. In general we get the following

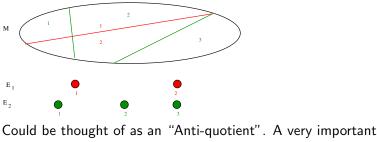


 \mathcal{M}^{eq} is constructed from a structure \mathcal{M} by for each \emptyset -definable *r*-ary equivalence relation *E*:

- ► Add unique element e ∈ M^{eq} − M for each E−equivalence class.
- ► Add new unary relation symbol P_E such that e represents an E-equivalence class iff M^{eq} ⊨ P_E(e)
- Add a r + 1-ary relation symbol R_E(y, x̄) such that ā ∈ M is in the equivalence class of e iff M^{eq} ⊨ R_E(e, ā).

 \mathcal{M}^{eq} is constructed from a structure \mathcal{M} by for each \emptyset -definable *r*-ary equivalence relation *E*:

- ► Add unique element e ∈ M^{eq} − M for each E−equivalence class.
- ► Add new unary relation symbol P_E such that e represents an E-equivalence class iff M^{eq} ⊨ P_E(e)
- Add a r + 1-ary relation symbol R_E(y, x̄) such that ā ∈ M is in the equivalence class of e iff M^{eq} ⊨ R_E(e, ā).



structure in infinite model theory.

If $E = \{E_1, ..., E_n\}$ is a finite set of \emptyset -definable equivalence relations then let \mathbf{K}^E be \mathbf{K} where we add the \mathcal{M}^{eq} structure for only the equivalence relations in E to each $\mathcal{N} \in \mathbf{K}$.

If $E = \{E_1, ..., E_n\}$ is a finite set of \emptyset -definable equivalence relations then let \mathbf{K}^E be \mathbf{K} where we add the \mathcal{M}^{eq} structure for only the equivalence relations in E to each $\mathcal{N} \in \mathbf{K}$.

Theorem

Let **K** be a set of finite relational structures with almost sure theory $T_{\mathbf{K}}$, then **K** has a 0 - 1 law and $T_{\mathbf{K}}$ is ω -categorical. iff \mathbf{K}^{E} has a 0 - 1 law and $T_{\mathbf{K}^{E}}$ is ω -categorical. If $E = \{E_1, ..., E_n\}$ is a finite set of \emptyset -definable equivalence relations then let \mathbf{K}^E be \mathbf{K} where we add the \mathcal{M}^{eq} structure for only the equivalence relations in E to each $\mathcal{N} \in \mathbf{K}$.

Theorem

Let **K** be a set of finite relational structures with almost sure theory $T_{\mathbf{K}}$, then **K** has a 0 - 1 law and $T_{\mathbf{K}}$ is ω -categorical. iff \mathbf{K}^{E} has a 0 - 1 law and $T_{\mathbf{K}^{E}}$ is ω -categorical. **Proof:** An application of the previous theorem.

Strongly minimal countably categorical almost sure theories

A theory T is strongly minimal if for each $\mathcal{M} \models T$, formula $\varphi(x, \overline{y})$ and $\overline{a} \in M$.

$$\varphi(\mathcal{M}, \bar{a}) = \{b \in \mathcal{M} : \mathcal{M} \models \varphi(b, \bar{a})\} \text{ or } \neg \varphi(\mathcal{M}, \bar{a})$$

is finite.

Theorem

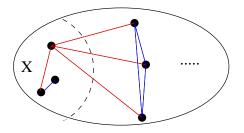
Assume **K** has a 0-1 law and $\mathcal{N} \in \mathbf{K}_n$ implies |N| = n. Then

 $T_{\mathbf{K}}$ is strongly minimal and ω -categorical

\Leftrightarrow

There exists $m \in \mathbb{N}$ such that $\lim_{n \to \infty}$

 $\mu_n(\{\mathcal{M} \in \mathbf{K}_n : \text{there is } X \subseteq M, |X| \le m, Sym_X(M) \le Aut(\mathcal{M})\}) = 1$



Questions?

ove@math.uu.se www.math.uu.se/~ove O. Ahlman, Countably categorical almost sure theories, Preprint (2014)

- 1. K.J. Compton, *The computational complexity of asymptotic problems I: partial orders*, Inform. and comput. 78 (1988), 108-123.
- 2. R. Fagin, Probabilities on finite model theory, J. Symbolic Logic 41 (1976), no. 1, 55-58.
- Y. V. Glebskii. D. I. Kogan, M.I. Liogonkii, V.A. Talanov, Volume and fraction of Satisfiability of formulas of the lower predicate calculus, Kibernetyka Vol. 2 (1969) 17-27.
- 4. S. Haber, M. Krivelevich, *The logic of random regular graphs*, Journal of combinatorics, Volume 1 (2010) 389-440.
- V. Koponen, Asymptotic probabilities of extension properties and random l-colourable structures, Annals of Pure and Applied Logic, Vol. 163 (2012) 391-438.
- J. Spencer, S. Shelah, Zero-one laws for sparse random graphs, Journal of the american mathematical society, Volume 1 (1988) 97-115.

3

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □