Models and termination of proof-reduction in the $\lambda \Pi$ -calculus modulo theory

Gilles Dowek

Models and truth values

A model: a set \mathcal{M} , a set \mathcal{B} , a function (parametrized by valuations) [[.]] mapping terms to elements of \mathcal{M} , and propositions to elements of \mathcal{B}

E.g.: $\llbracket A \land B \rrbracket_{\phi} = \llbracket A \rrbracket_{\phi} \land \llbracket B \rrbracket_{\phi}$ $\llbracket \forall x A \rrbracket_{\phi} = \check{\forall} \{\llbracket A \rrbracket_{\phi+x=a} \mid a \in \mathcal{M} \}$ ($\check{\forall}$ from $\mathcal{P}(\mathcal{B})$ to \mathcal{B}) $\mathcal{B} = \{0, 1\}$ but also: a Boolean algebra, a Heyting algebra, a pre-Boolean algebra, a pre-Heyting algebra (pre-order) Pre-order: distinguish weak equivalence ($\llbracket A \rrbracket_{\phi} \leq \llbracket B \rrbracket_{\phi}$ and $\llbracket B \rrbracket_{\phi} \leq \llbracket A \rrbracket_{\phi}$) from strong $\llbracket A \rrbracket_{\phi} = \llbracket B \rrbracket_{\phi}$ **Deduction modulo theory**

Theory: axioms + congruence (computational / definitional eq.)

Proofs modulo the congruence

E.g. $(2 \times 2 = 4) \equiv \top$

$$\frac{1}{1 + 2 \times 2 = 4} \quad \text{T-intro}$$
$$\frac{1}{1 + 3x (2 \times x = 4)} \quad \text{(2) } \exists \text{-intro}$$

Models and termination in Deduction modulo theory

Proposition A valid if for all ϕ , $[\![A]\!]_{\phi} \geq \widetilde{\top}$

(In particular: $A \Leftrightarrow B$ valid if for all ϕ , $\llbracket A \rrbracket_{\phi} \leq \llbracket B \rrbracket_{\phi}$ and $\llbracket B \rrbracket_{\phi} \leq \llbracket A \rrbracket_{\phi}$)

Congruence \equiv valid if $A \equiv B$ implies for all ϕ , $\llbracket A \rrbracket_{\phi} = \llbracket B \rrbracket_{\phi}$

Note: \leq not used for defining validity of \equiv

Proof-reduction does not always terminate $P \equiv (P \Rightarrow P)$

But it does if this theory has a model valued in the pre-Heyting algebra of reducibility candidates (D-Werner 20th century)

The algebra of reducibility candidates

A pre-Heyting algebra but not a Heyting algebra: $(\tilde{\top} \Rightarrow \tilde{\top}) \neq \tilde{\top}$

For termination, congruence matters, not axioms

 \leq immaterial, can take $a \leq b$ always: Trivial pre-Heyting algebra The conditions (e.g. $a \wedge b \leq a$) always satisfied A set \mathcal{B} equipped with operations $\wedge, \tilde{\Rightarrow}, \tilde{\forall}, ...$ and no conditions

Super-consistency

Proof-reduction terminates

if \equiv has a model valued in the algebra of reducibility candidates

a fortiori:

if for each trivial pre-Heyting algebra \mathcal{B} , \equiv has a \mathcal{B} -model

if for each pre-Heyting algebra \mathcal{B} , \equiv has a \mathcal{B} -model

Model-theoretic sufficient conditions for termination of proof-reduction

From Deduction modulo theory to the $\lambda \Pi$ -calculus modulo theory

Deduction modulo theory + algorithmic interpretation of proofs = $\lambda \Pi$ -calculus modulo theory (aka Martin-Löf Logical Framework) λ -calculus with dependent types + an extended conversion rule

$$\frac{\Gamma \vdash A : s \quad \Gamma \vdash B : s \quad \Gamma \vdash t : A}{\Gamma \vdash t : B} A \equiv B$$

Logical Framework: various congruences permit to express proofs in various theories: Arithmetic, Simple type theory, the Calculus of Constructions, functional Pure Type Systems, ...

This talk

What is a model of the $\lambda \Pi$ -calculus modulo a congruence \equiv ?

What is a model valued in a (trivial) pre-Heyting algebra \mathcal{B} ?

A proof that the existence of such a model implies termination of proof-reduction

An application to a termination proof for proof-reduction in the $\lambda\Pi$ -calculus modulo Simple type theory and modulo the Calculus of Constructions

Π -algebras

Adapt notion of (trivial) pre-Heyting algebra to $\lambda \Pi$ -calculus

A set \mathcal{B} with two operations \tilde{T} and $\tilde{\Pi}$ and no conditions \tilde{T} in \mathcal{B} (both for \top and "termination") $\tilde{\Pi}$ from $\mathcal{B} \times \mathcal{A}$ to \mathcal{B} (A subset of $\mathcal{P}(\mathcal{A})$): Π both a binary connective and a quantifier

Double interpretation

Already in Many-sorted predicate logic: a family of domains $(\mathcal{M}_s)_s$ indexed by sorts

Then, $[\![.]\!]$ mapping terms of sort s to elements of \mathcal{M}_s and propositions to elements of \mathcal{B}

In the $\lambda \Pi$ -calculus, sorts, terms, and propositions are λ -terms:

 $(\mathcal{M}_t)_t$ indexed by λ -terms

 $\llbracket . \rrbracket$ mapping each λ -term t of type A to $\llbracket t \rrbracket_{\phi}$ in \mathcal{M}_A

A model valued in \mathcal{B} :

on
$$\mathcal{M}$$
: $\mathcal{M}_{Kind} = \mathcal{M}_{Type} = \mathcal{B}$
on \llbracket . \rrbracket : $\llbracket Kind \rrbracket_{\phi} = \llbracket Type \rrbracket_{\phi} = \tilde{T}$
 $\llbracket \Pi x : C D \rrbracket_{\phi} = \tilde{\Pi}(\llbracket C \rrbracket_{\phi}, \{\llbracket D \rrbracket_{\phi+x=c} \mid c \in \mathcal{M}_C\})$

Validity of \equiv :

if $A\equiv B$ then

 $\mathcal{M}_A = \mathcal{M}_B$

and for all $\phi,\,[\![A]\!]_\phi=[\![B]\!]_\phi$

Example: a model of the $\lambda \Pi$ -calculus modulo simple type theory

$$\begin{split} \iota : Type, o : Type, \\ \varepsilon : o \to Type, \\ \dot{\Rightarrow} : o \to o \to o, \dot{\forall}_A : (A \to o) \to o \text{ (for a finite number of } A) \end{split}$$

Congruence defined by the rewrite rules

$$\varepsilon(\Rightarrow X Y) \longrightarrow \varepsilon(X) \to \varepsilon(Y)$$
$$\varepsilon(\forall_A X) \longrightarrow \Pi z : A \varepsilon(X z)$$

$(\mathcal{M}_t)_t$

 ${\mathcal B}$ any $\Pi\mbox{-algebra}$ and $\{e\}$ any one-element set

•
$$\mathcal{M}_{Kind} = \mathcal{M}_{Type} = \mathcal{M}_o = \mathcal{B}$$

•
$$\mathcal{M}_{\iota} = \mathcal{M}_{\varepsilon} = \mathcal{M}_{\Rightarrow} = \mathcal{M}_{\dot{\forall}_A} = \mathcal{M}_x = \{e\}$$

•
$$\mathcal{M}_{\lambda x:C t} = \mathcal{M}_t$$

•
$$\mathcal{M}_{(t \ u)} = \mathcal{M}_t$$

• $\mathcal{M}_{\Pi x:C \ D}$ set of functions from \mathcal{M}_C to \mathcal{M}_D except if $\mathcal{M}_D = \{e\}$, in which case $\mathcal{M}_{\Pi x:C \ D} = \{e\}$

$\llbracket \cdot \rrbracket$

- $\llbracket Kind \rrbracket_{\phi} = \llbracket Type \rrbracket_{\phi} = \llbracket \iota \rrbracket_{\phi} = \llbracket o \rrbracket_{\phi} = \tilde{T}$
- $\bullet \ [\![\lambda x : C \ t]\!]_{\phi} \ \text{function} \ldots$
- $\llbracket \Pi x : C D \rrbracket_{\phi} = \widetilde{\Pi}(\llbracket C \rrbracket_{\phi}, \{\llbracket D \rrbracket_{\phi, x=c} \mid c \in \mathcal{M}_C\})$
- $\llbracket \varepsilon \rrbracket_\phi$ is the identity on $\mathcal B$
- ...

Also (but more complicated): a model of the $\lambda\Pi$ -calculus modulo the Calculus of Constructions

Termination of proof-reduction

Theorem: if a \equiv has a model valued in all (trivial) pre-Heyting algebras then proof-reduction modulo \equiv terminates

Business as usual

A model valued in the algebra of reducibility candidates

 $\llbracket A \rrbracket_\phi$ set of terms

if t : A then $t \in \llbracket A \rrbracket$ hence t terminates

Conclusion

Usual "Tarskian" notion of model valued in an algebra \mathcal{B} extends to type theory: no conceptual difficulties (but devil in the details)

A purely model-theoretic sufficient condition for termination of proof-reduction

Applies to Simple type theory and the Calculus of Constructions

Future work: non-trivial pre-orders \leq to prove independence results without the detour to termination of proof-reduction