Logics extended with embedding-closed quantifiers

Jevgeni Haigora

Advised by Kerkko Luosto and Lauri Hella

University of Tampere School of Information Sciences 2014

Jevgeni Haigora Logics extended with embedding-closed quantifiers

イロト イボト イヨト イヨト

э

• A natural way to extend the expressive power of a logic

イロト イボト イヨト イヨト

- A natural way to extend the expressive power of a logic
- Mostowski was one of the first to suggest such an extension in 1957. The current definition is due to Lindström (1966)

イロト イボト イヨト イヨト

- A natural way to extend the expressive power of a logic
- Mostowski was one of the first to suggest such an extension in 1957. The current definition is due to Lindström (1966)
- A quantifier Q corresponds to some property P_Q of $\tau\text{-structures}$ for a given vocabulary τ

(日)

- A natural way to extend the expressive power of a logic
- Mostowski was one of the first to suggest such an extension in 1957. The current definition is due to Lindström (1966)
- A quantifier Q corresponds to some property P_Q of τ -structures for a given vocabulary τ
- \bullet By adding a quantifier Q to a logic ${\cal L}$ we get the smallest extension ${\cal L}$ that can express property P_Q

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

Example (Cardinality quantifier Q_{α})

 $\mathfrak{A} \vDash Q_{\alpha} \times \varphi(x)$ if and only if there are \aleph_{α} elements $a \in A$ such that $\mathfrak{A} \vDash \varphi(a)$

Jevgeni Haigora Logics extended with embedding-closed quantifiers

イロト イポト イヨト イヨト

э

Example (Cardinality quantifier Q_{α})

 $\mathfrak{A} \vDash Q_{lpha} x \varphi(x)$ if and only if there are \aleph_{lpha} elements $a \in A$ such that $\mathfrak{A} \vDash \varphi(a)$

Example (Well-ordering quantifier Q^w)

 $\mathfrak{A} \vDash Q_w x y \varphi(x, y)$ if and only if $\varphi(x, y)$ defines a well-ordering of elements of \mathfrak{A}

イロト 人間ト イヨト イヨト

Example (Cardinality quantifier Q_{α})

 $\mathfrak{A} \vDash Q_{lpha} x \varphi(x)$ if and only if there are \aleph_{lpha} elements $a \in A$ such that $\mathfrak{A} \vDash \varphi(a)$

Example (Well-ordering quantifier Q^w)

 $\mathfrak{A} \vDash Q_w xy \varphi(x, y)$ if and only if $\varphi(x, y)$ defines a well-ordering of elements of \mathfrak{A}

Example (Equicardinality quantifier I)

 $\mathfrak{A} \models I_{xy}(\varphi(x), \psi(y))$ if and only if φ and ψ define sets of the same cardinality

イロト イボト イヨト イヨト

A quantifier Q is *embedding-closed* if $\mathfrak{A} \in Q$ and $\mathfrak{A} \leq \mathfrak{B}$ imply $\mathfrak{B} \in Q$

Jevgeni Haigora Logics extended with embedding-closed quantifiers

イロト イポト イヨト イヨト

A quantifier Q is *embedding-closed* if $\mathfrak{A} \in Q$ and $\mathfrak{A} \leq \mathfrak{B}$ imply $\mathfrak{B} \in Q$

Lemma

Let τ be a vocabulary, $(\varphi_{\alpha})_{\alpha < \kappa}$ quantifier-free τ -formulas and Q an embedding-closed quantifier of width κ . The formula $Q(\overline{x}_{\alpha}\varphi_{\alpha})_{\alpha < \kappa}$ is preserved by embeddings.

(日)

A quantifier Q is *embedding-closed* if $\mathfrak{A} \in Q$ and $\mathfrak{A} \leq \mathfrak{B}$ imply $\mathfrak{B} \in Q$

Lemma

Let τ be a vocabulary, $(\varphi_{\alpha})_{\alpha < \kappa}$ quantifier-free τ -formulas and Q an embedding-closed quantifier of width κ . The formula $Q(\overline{x}_{\alpha}\varphi_{\alpha})_{\alpha < \kappa}$ is preserved by embeddings.

Proof.

• Suppose $(\mathfrak{A}, \overline{a}) \vDash Q(\overline{x}_{\alpha} \vartheta_{\alpha})_{\alpha < \kappa}$ and $f : \mathfrak{A} \to \mathfrak{B}$ is an embedding

A quantifier Q is *embedding-closed* if $\mathfrak{A} \in Q$ and $\mathfrak{A} \leq \mathfrak{B}$ imply $\mathfrak{B} \in Q$

Lemma

Let τ be a vocabulary, $(\varphi_{\alpha})_{\alpha < \kappa}$ quantifier-free τ -formulas and Q an embedding-closed quantifier of width κ . The formula $Q(\overline{x}_{\alpha}\varphi_{\alpha})_{\alpha < \kappa}$ is preserved by embeddings.

Proof.

- Suppose $(\mathfrak{A}, \overline{a}) \vDash Q(\overline{x}_{\alpha} \vartheta_{\alpha})_{\alpha < \kappa}$ and $f : \mathfrak{A} \to \mathfrak{B}$ is an embedding
- Then $f: (A, (\vartheta^{\mathfrak{A},\bar{a}}_{\alpha})_{\alpha<\kappa}) \to (B, (\vartheta^{\mathfrak{B},f\bar{a}}_{\alpha})_{\alpha<\kappa})$ is an embedding too

A quantifier Q is *embedding-closed* if $\mathfrak{A} \in Q$ and $\mathfrak{A} \leq \mathfrak{B}$ imply $\mathfrak{B} \in Q$

Lemma

Let τ be a vocabulary, $(\varphi_{\alpha})_{\alpha < \kappa}$ quantifier-free τ -formulas and Q an embedding-closed quantifier of width κ . The formula $Q(\overline{x}_{\alpha}\varphi_{\alpha})_{\alpha < \kappa}$ is preserved by embeddings.

Proof.

- Suppose $(\mathfrak{A}, \overline{a}) \vDash Q(\overline{x}_{\alpha} \vartheta_{\alpha})_{\alpha < \kappa}$ and $f \colon \mathfrak{A} \to \mathfrak{B}$ is an embedding
- Then $f: (A, (\vartheta^{\mathfrak{A},\bar{a}}_{\alpha})_{\alpha<\kappa}) \to (B, (\vartheta^{\mathfrak{B},f\bar{a}}_{\alpha})_{\alpha<\kappa})$ is an embedding too

• Thus
$$(\mathfrak{B}, f\overline{a}) \vDash Q(\overline{x}_{\alpha}\vartheta_{\alpha})_{\alpha < \kappa}$$

A structure \mathfrak{A} is *quasi-homogeneous* if every isomorphism between finitely generated substructures of \mathfrak{A} can be extended to an embedding of \mathfrak{A} into itself.

・ロト ・回ト ・ヨト

э

A structure \mathfrak{A} is *quasi-homogeneous* if every isomorphism between finitely generated substructures of \mathfrak{A} can be extended to an embedding of \mathfrak{A} into itself.

Example

The real line (\mathbf{R}, \leq) with some real number removed from it is quasi-homogeneous but not homogeneous.

(日)

A structure \mathfrak{A} is *quasi-homogeneous* if every isomorphism between finitely generated substructures of \mathfrak{A} can be extended to an embedding of \mathfrak{A} into itself.

Example

The real line (\mathbf{R},\leq) with some real number removed from it is quasi-homogeneous but not homogeneous.

Lemma

A τ -structure \mathfrak{A} has quantifier elimination for $\mathcal{L}_{\infty\omega}(\mathcal{Q}_{emb})$ if and only if it is quasi-homogeneous.

イロト イポト イヨト イヨト

Theorem

Let τ be a finite relational vocabulary, Q a finite set of embedding-closed quantifiers of finite width and $(\mathfrak{A}_i)_{i<\omega}$ a chain of quasi-homogeneous τ -structures. For each $m < \omega$, there is a natural number N_m such that for every formula $\varphi \in \mathcal{L}^m_{\infty\omega}(Q)[\tau]$ there is a quantifier-free τ -formula ϑ_{φ} such that

$$\mathfrak{A}_i \vDash \forall \overline{x} (\varphi \leftrightarrow \vartheta_{\varphi})$$

for all $i \geq N_m$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Preservation of formulas in chains of quasi-homogeneous structures

Jevgeni Haigora Logics extended with embedding-closed quantifiers

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Preservation of formulas in chains of quasi-homogeneous structures

Proof.

• Let $\varphi_0, \ldots, \varphi_I$ be an enumeration of $\mathcal{L}^m_{\infty\omega}(\mathcal{Q})$ -formulas of the form $Q(\overline{x}_i\psi_i)_{i<\omega}$ with all ψ_i quantifier-free, and suppose φ is one of these formulas

イロト イポト イヨト イヨト

- Let $\varphi_0, \ldots, \varphi_I$ be an enumeration of $\mathcal{L}^m_{\infty\omega}(\mathcal{Q})$ -formulas of the form $Q(\overline{x}_i\psi_i)_{i<\omega}$ with all ψ_i quantifier-free, and suppose φ is one of these formulas
- Note that / is finite

(日)

- Let $\varphi_0, \ldots, \varphi_I$ be an enumeration of $\mathcal{L}^m_{\infty\omega}(\mathcal{Q})$ -formulas of the form $Q(\overline{x}_i\psi_i)_{i<\omega}$ with all ψ_i quantifier-free, and suppose φ is one of these formulas
- Note that / is finite
- For each $i < \omega$, let $T_i = \{t : t \text{ is an atomic type and } (\mathfrak{A}_i, \overline{a}) \vDash \varphi \land t \text{ for some } \overline{a}\}.$

- Let $\varphi_0, \ldots, \varphi_I$ be an enumeration of $\mathcal{L}^m_{\infty\omega}(\mathcal{Q})$ -formulas of the form $Q(\overline{x}_i\psi_i)_{i<\omega}$ with all ψ_i quantifier-free, and suppose φ is one of these formulas
- Note that / is finite
- For each $i < \omega$, let $T_i = \{t : t \text{ is an atomic type and } (\mathfrak{A}_i, \overline{a}) \vDash \varphi \land t \text{ for some } \overline{a}\}.$
- Then $\mathfrak{A}_i \vDash \forall \overline{x}(\varphi \leftrightarrow \bigvee T_i)$ for all $i < \omega$

イロト イポト イヨト イヨト

- Let $\varphi_0, \ldots, \varphi_I$ be an enumeration of $\mathcal{L}^m_{\infty\omega}(\mathcal{Q})$ -formulas of the form $Q(\overline{x}_i\psi_i)_{i<\omega}$ with all ψ_i quantifier-free, and suppose φ is one of these formulas
- Note that / is finite
- For each $i < \omega$, let $T_i = \{t : t \text{ is an atomic type and } (\mathfrak{A}_i, \overline{a}) \vDash \varphi \land t \text{ for some } \overline{a}\}.$
- Then $\mathfrak{A}_i \vDash \forall \overline{x}(\varphi \leftrightarrow \bigvee T_i)$ for all $i < \omega$
- Since both φ and $\bigvee T_i$ are preserved in embeddings, we have $T_i \subseteq T_j$ always when $i \leq j$ so T_i :s reach their maximum at some $k_{\varphi} < \omega$

(日)

- Let $\varphi_0, \ldots, \varphi_I$ be an enumeration of $\mathcal{L}^m_{\infty\omega}(\mathcal{Q})$ -formulas of the form $Q(\overline{x}_i\psi_i)_{i<\omega}$ with all ψ_i quantifier-free, and suppose φ is one of these formulas
- Note that / is finite
- For each $i < \omega$, let $T_i = \{t : t \text{ is an atomic type and } (\mathfrak{A}_i, \overline{a}) \vDash \varphi \land t \text{ for some } \overline{a}\}.$

• Then
$$\mathfrak{A}_i \vDash \forall \overline{x}(\varphi \leftrightarrow \bigvee T_i)$$
 for all $i < \omega$

- Since both φ and $\bigvee T_i$ are preserved in embeddings, we have $T_i \subseteq T_j$ always when $i \leq j$ so T_i :s reach their maximum at some $k_{\varphi} < \omega$
- Thus we can set $N_m = \max\{k_{\varphi_i} : i \leq l\}$

(日)

Preservation of formulas in chains of quasi-homogeneous structures

This proof can be generalized to formulas of the logic $\mathcal{L}_{\infty\omega}(\mathcal{Q}_{emb})$ as well.

Corollary If \mathfrak{A} and \mathfrak{B} are quasi-homogeneous bi-embeddable structures then $\mathfrak{A} \equiv_{emb} \mathfrak{B}$.

・ロット (雪) () () () ()

Preservation of formulas in chains of quasi-homogeneous structures

This proof can be generalized to formulas of the logic $\mathcal{L}_{\infty\omega}(\mathcal{Q}_{emb})$ as well.

Corollary

If \mathfrak{A} and \mathfrak{B} are quasi-homogeneous bi-embeddable structures then $\mathfrak{A} \equiv_{emb} \mathfrak{B}$.

Example

The following properties are not definable in $\mathcal{L}_{\infty\omega}(\mathcal{Q}_{emb})$:

- Equicardinality of unary predicates
- Completenes of an order
- Cofinality of an order

イロト イポト イヨト イヨト

• $\gamma\text{-embedding game is played on two structures, <math display="inline">\mathfrak A$ and $\mathfrak B,$ by two players, Spoiler and Duplicator

- $\gamma\text{-embedding game is played on two structures, <math display="inline">\mathfrak A$ and $\mathfrak B,$ by two players, Spoiler and Duplicator
- A position in the game is a tuple $(\mathfrak{A}, \overline{a}, \mathfrak{B}, \overline{b}, \beta)$

イロト イポト イヨト イヨト

- $\gamma\text{-embedding game is played on two structures, <math display="inline">\mathfrak A$ and $\mathfrak B,$ by two players, Spoiler and Duplicator
- A position in the game is a tuple $(\mathfrak{A}, \overline{a}, \mathfrak{B}, \overline{b}, \beta)$
- A round starts with Duplicator selecting two embeddings $f: \mathfrak{A} \to \mathfrak{B}$ and $g: \mathfrak{B} \to \mathfrak{A}$ such that $f\overline{a} = \overline{b}$ and $g\overline{b} = \overline{a}$

イロト イボト イヨト イヨト

з.

- $\gamma\text{-embedding game is played on two structures, <math display="inline">\mathfrak A$ and $\mathfrak B,$ by two players, Spoiler and Duplicator
- A position in the game is a tuple $(\mathfrak{A}, \overline{a}, \mathfrak{B}, \overline{b}, \beta)$
- A round starts with Duplicator selecting two embeddings $f: \mathfrak{A} \to \mathfrak{B}$ and $g: \mathfrak{B} \to \mathfrak{A}$ such that $f\overline{a} = \overline{b}$ and $g\overline{b} = \overline{a}$
- Duplicator loses if there are no such embeddings

・ロット (雪) () () () ()

- $\gamma\text{-embedding game is played on two structures, <math display="inline">\mathfrak A$ and $\mathfrak B,$ by two players, Spoiler and Duplicator
- A position in the game is a tuple $(\mathfrak{A}, \overline{a}, \mathfrak{B}, \overline{b}, \beta)$
- A round starts with Duplicator selecting two embeddings $f: \mathfrak{A} \to \mathfrak{B}$ and $g: \mathfrak{B} \to \mathfrak{A}$ such that $f\overline{a} = \overline{b}$ and $g\overline{b} = \overline{a}$
- Duplicator loses if there are no such embeddings
- Otherwise, Spoiler selects a tuple c̄ ∈ A^k or d̄ ∈ B^k for some k < ω, and an ordinal α < β and the game proceeds to the next round from the position (𝔄, āc, 𝔅, b̄f̄c, α) or (𝔄, āḡd, 𝔅, b̄d̄, α)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- $\gamma\text{-embedding game is played on two structures, <math display="inline">\mathfrak A$ and $\mathfrak B,$ by two players, Spoiler and Duplicator
- A position in the game is a tuple $(\mathfrak{A}, \overline{a}, \mathfrak{B}, \overline{b}, \beta)$
- A round starts with Duplicator selecting two embeddings $f: \mathfrak{A} \to \mathfrak{B}$ and $g: \mathfrak{B} \to \mathfrak{A}$ such that $f\overline{a} = \overline{b}$ and $g\overline{b} = \overline{a}$
- Duplicator loses if there are no such embeddings
- Otherwise, Spoiler selects a tuple c̄ ∈ A^k or d̄ ∈ B^k for some k < ω, and an ordinal α < β and the game proceeds to the next round from the position (𝔄, āc, 𝔅, b̄f̄c, α) or (𝔄, āḡd, 𝔅, b̄d̄, α)
- Duplicator wins if the game reaches position with $\beta = 0$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Theorem

Let τ be vocabulary and \mathfrak{A} , $\mathfrak{B} \tau$ -structures. For all ordinals $\gamma < \omega_1$ we have $\mathfrak{A} \simeq_{\mathsf{emb}}^{\gamma} \mathfrak{B}$ if and only if $\mathfrak{A} \equiv_{\mathsf{emb}}^{\gamma} \mathfrak{B}$.

イロト イヨト イヨト

Theorem

Let τ be vocabulary and \mathfrak{A} , $\mathfrak{B} \tau$ -structures. For all ordinals $\gamma < \omega_1$ we have $\mathfrak{A} \simeq_{\mathsf{emb}}^{\gamma} \mathfrak{B}$ if and only if $\mathfrak{A} \equiv_{\mathsf{emb}}^{\gamma} \mathfrak{B}$.

Corollary

Let τ be vocabulary and \mathfrak{A} , $\mathfrak{B} \tau$ -structures. Then we have $\mathfrak{A} \simeq_{\mathsf{emb}} \mathfrak{B}$ if and only if $\mathfrak{A} \equiv_{\mathsf{emb}} \mathfrak{B}$.

イロト イボト イヨト イヨト

We use embedding game to prove the following:

Theorem

For each $n < \omega$, there is a first-order sentence φ_n of quantifier rank n that is not expressible by any $\mathcal{L}_{\infty\omega}(\mathcal{Q}_{emb})$ -sentence of quantifier rank less than n.

(日)

€ 9Q@

Embedding game

Embedding game

Jevgeni Haigora Logics extended with embedding-closed quantifiers

Thank you!

Jevgeni Haigora Logics extended with embedding-closed quantifiers

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @