Finding independence notions in metric structures

Åsa Hirvonen (Joint work with Tapani Hyttinen)

Department of Mathematics and Statistics University of Helsinki, Finland

> August 27, 2014 SLS2014 Tampere

Why independence?

- aim: classification of structures by sets of invariants
- well behaved independence notions give dimensions
- generalising what forking does in first order theories

Challenges of metric structures

- not FO-axiomatisable
- "look better if blurred"
 - measure size wrt densities
 - allowing for small changes (*perturbations*) make model classes even better behaved (we come down in the stability hierarchy)

• consider "elementary" submodels of a strongly homogeneous monster model

∃ ▶ ∢

- consider "elementary" submodels of a strongly homogeneous monster model
- use syntax-free approach (metric AEC)

A D > A A + A

- consider "elementary" submodels of a strongly homogeneous monster model
- use syntax-free approach (metric AEC)
- work with respect to perturbations

- consider "elementary" submodels of a strongly homogeneous monster model
- use syntax-free approach (metric AEC)
- work with respect to perturbations
- look at "classical" independence notion from homogeneous model theory

- consider "elementary" submodels of a strongly homogeneous monster model
- use syntax-free approach (metric AEC)
- work with respect to perturbations
- look at "classical" independence notion from homogeneous model theory
- approximate this notion

Galois-types

When looking at submodels of a strongly homogeneous monster \mathfrak{M} , Galois-types are orbits:

Definition

$$t^g(a/A) = t^g(b/A)$$

if and only if

there is
$$f \in \operatorname{Aut}(\mathfrak{M}/A)$$
 s.t. $f(a) = b$.

Metrics on the type space

Definition (The inf-distance metric)

$$d(p,q) = \inf\{d(a,b) : a \models p, b \models q\}$$

Åsa Hirvonen (University of Helsinki)

メロト スポト メヨト メヨ

Metrics on the type space

Definition (The inf-distance metric)

$$d(p,q) = \inf\{d(a,b) : a \models p, b \models q\}$$

Definition (A perturbation metric)

 $\mathbf{d}^p(\mathbf{t}^g(a/\emptyset),\mathbf{t}^g(b/\emptyset)) \leq \varepsilon$

if there are ε -automorphisms f and g of the monster model such that $d(f(a), b) \leq \varepsilon$ and $d(g(b), a) \leq \varepsilon$.

Metrics on the type space

Definition (The inf-distance metric)

 $d(p,q) = \inf\{d(a,b) : a \models p, b \models q\}$

Definition (A perturbation metric)

 $\mathbf{d}^p(\mathbf{t}^g(a/\emptyset),\mathbf{t}^g(b/\emptyset)) \leq arepsilon$

if there are ε -automorphisms f and g of the monster model such that $d(f(a), b) \le \varepsilon$ and $d(g(b), a) \le \varepsilon$. Extend to types over parameters by:

 $\mathbf{d}^{p}(\mathbf{t}^{g}(a/A),\mathbf{t}^{g}(b/A)) = \sup\{\mathbf{d}^{p}(\mathbf{t}^{g}(ac/\emptyset),\mathbf{t}^{g}(bc/\emptyset)) : c \in A \text{ finite}\}.$

With suitable assumptions on the ε -isomorphisms this defines a metrisable (diagonal) uniformity.

A note on stability

 $\begin{array}{ll} \text{We have three ways of measuring stability:} \\ \text{classical} & |\mathcal{A}| \leq \lambda \Rightarrow \text{card}(\mathcal{S}(\mathcal{A})) \leq \lambda \end{array}$

3

メロト スポト メヨト メヨ

A note on stability

 $\begin{array}{ll} \mbox{We have three ways of measuring stability:} \\ \mbox{classical} & |\mathcal{A}| \leq \lambda \Rightarrow \mbox{card}(\mathcal{S}(\mathcal{A})) \leq \lambda \end{array}$

metric $|A| \le \lambda \Rightarrow \operatorname{dens}(S(A)) \le \lambda$

3

∃ → < ∃</p>

A note on stability

We have three ways of measuring stability: $|A| < \lambda \Rightarrow \operatorname{card}(S(A)) \leq \lambda$ classical

 $|A| \leq \lambda \Rightarrow \operatorname{dens}(S(A)) \leq \lambda$ metric

with perturbations $|A| \leq \lambda \Rightarrow \operatorname{dens}(S(A)) \leq \lambda$ with respect to a perturbation metric \mathbf{d}_{p}

∃ → < ∃</p>

Independence from homogeneous model theory

Fact (Hyttinen–Shelah [HS00])

In a stable homogeneous class there is an independence notion, defined via strong splitting, that works well over saturated enough models.

We work with a metric abstract elementary class with perturbations $(\mathbb{K}, \preccurlyeq, \mathbb{F}_{\varepsilon})_{\varepsilon \geq 0}$ that

- has arbitrarily large models
- satisfies the joint embedding property
- \bullet satisfies a form of amalgamation wrt $\mathbb{F} {:}$
- is homogeneous

3

- has arbitrarily large models
- satisfies the joint embedding property
- \bullet satisfies a form of amalgamation wrt $\mathbb{F} {:}$
- is homogeneous
- has the perturbation property

- has arbitrarily large models
- satisfies the joint embedding property
- \bullet satisfies a form of amalgamation wrt \mathbb{F} :
- is homogeneous
- has the perturbation property
- has complete type spaces

- has arbitrarily large models
- satisfies the joint embedding property
- \bullet satisfies a form of amalgamation wrt \mathbb{F} :
- is homogeneous
- has the perturbation property
- has complete type spaces
- is \mathbf{d}^{p} -superstable (i.e. stable wrt \mathbf{d}^{p} from some λ onwards)

- has arbitrarily large models
- satisfies the joint embedding property
- \bullet satisfies a form of amalgamation wrt \mathbb{F} :
- is homogeneous
- has the perturbation property
- has complete type spaces
- is \mathbf{d}^{p} -superstable (i.e. stable wrt \mathbf{d}^{p} from some λ onwards)
- is weakly simple

Measuring independence, background

- We have an independence notion and a notion of distance between types.
- But independence is not really a property of Galois types but of Lascar strong types. So we develop a measure of distance for Lascar types.

Lascar strong types and Lascar types

Definition

Two tuples a and b have the same Lascar strong type over A,

```
Lstp(a/A) = Lstp(b/A)
```

if E(a, b) holds for any A-invariant equivalence relation with a bounded number of equivalence classes.

Lascar strong types and Lascar types

Definition

Two tuples a and b have the same Lascar strong type over A,

```
Lstp(a/A) = Lstp(b/A)
```

if E(a, b) holds for any A-invariant equivalence relation with a bounded number of equivalence classes.

Definition (Hyttinen-Kesälä)

Two tuples a and b have the same Lascar type over A,

$$Lstp^w(a/A) = Lstp^w(b/A)$$

if for all finite $B \subseteq A$, Lstp(a/B) = Lstp(b/B).

By homogeneity $Lstp^w(a/A) = Lstp^w(b/A)$ implies $t^g(a/A) = t^g(b/A)$.

Measuring independence

We define d_a^p , a distance-like relation on the space of Lascar types, that defines a metrisable topology.

Definition

• For a finite set A we define

 $d_a^p(Lstp(a/A), Lstp(b/A)) = \sup\{d^p(t^g(a/B), t^g(b/B)) : A \subseteq B \text{ finite}, B \downarrow_A ab\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Measuring independence

We define d_a^p , a distance-like relation on the space of Lascar types, that defines a metrisable topology.

Definition

• For a finite set A we define

 $d_a^p(Lstp(a/A), Lstp(b/A)) = \sup\{d^p(t^g(a/B), t^g(b/B)) : A \subseteq B \text{ finite}, B \downarrow_A ab\}.$

2 For any set B we then define

 $d_a^p(Lstp^w(a/B), Lstp^w(b/B)) = \sup\{d_a^p(Lstp(a/A), Lstp(b/A)) : A \subseteq B, A \text{ finite}\}.$

Measuring independence, ε -freeness

Our measure of independence is given by ε -freeness:

Definition For $\varepsilon > 0$, we write $a \downarrow_A^{\varepsilon} B$ if for all finite $C \subseteq A$, there is finite $C \subseteq D \subseteq A$ and b such that $Lstp(b/D) = Lstp(a/D), b \downarrow_D AB$ and $d_a^p(Lstp^w(b/AB), Lstp^w(a/AB)) \le \varepsilon$.

By $a \downarrow_A^0 B$ we mean that $a \downarrow_A^{\varepsilon} B$ holds for all $\varepsilon > 0$.

< □ > < 同 > < E > < E > E < のQ @</p>

Results

Theorem

Under the given assumptions

• $a \downarrow^0_A B$ if and only if $a \downarrow_A B$.

2 For all A and a, there is countable $B \subseteq A$ such that $a \downarrow_B A$.

Note: By [HS00], in a stable homogeneous classes there is $\kappa(\mathbb{K}) < \beth_{(2^{LS}(\mathbb{K}))^+}$ such that for all a and $\lambda(\mathbb{K})$ -saturated \mathcal{A} there is $A \subseteq \mathcal{A}$ of power $< \kappa(\mathbb{K})$ such that $a \downarrow_A \mathcal{A}$. But even in the first-order case $\kappa(\mathbb{K})$ cannot be chosen to be smaller than $LS(\mathbb{K})^+$.

Results

Theorem

Under the given conditions, \mathbb{K} is simple, in the given setting superstability and weak simplicity imply simplicity.

Note that weak simplicity does not in general imply simplicity. There is an example of a class that is homogeneous, stable and weakly simple but not simple.

Results

Theorem

If the class \mathbb{K} is stable and weakly simple then T.F.A.E.

(i) \mathbb{K} is d^p -superstable.

(ii) For no $\varepsilon > 0$ is there an infinite \downarrow^{ε} -forking sequence.

(iii) For all a, A and $\varepsilon > 0$, there is a finite $B \subseteq A$ such that $a \downarrow_B^{\varepsilon} A$.

Example: *p*-adic integers

Definition

The *p*-adic norm, $||||_p$ is defined by

$$\left\|a\right\|_{p} = p^{-\max\{k:p^{k}|a\}}$$

The *p*-adic integers, \mathbb{Z}_p , is the completion of the integers in the *p*-adic topology.

The *p*-adic integers for an *ultrametric space*, i.e. a metric space where the triangle inequality is strengthened to

$$d(x,y) \leq \max\{d(x,z), d(z,y)\}.$$

Let \mathbb{K}_p be the class of completions of direct sums of copies of the *p*-adic integers, $\mathbb{Z}_p^{(\kappa)}$, with κ any cardinal.

Let $A \preccurlyeq B$ if A is a closed pure subgroup of B.

Use the infimum distance metric.

This gives a class satisfying the assumptions.

Independence in \mathbb{K}_p

Lemma

For elements $a \in M \in \mathbb{K}_p$, $A, B \subset M$, $a \downarrow_A B$ if and only if $d(a, \langle A \rangle_P) = d(a, \langle AB \rangle_P)$, where $\langle A \rangle_P$ is the pure subgroup in M generated by A.

イロト 不得下 イヨト イヨト

Independence in \mathbb{K}_p

Lemma

For elements $a \in M \in \mathbb{K}_p$, $A, B \subset M$, $a \downarrow_A B$ if and only if $d(a, \langle A \rangle_P) = d(a, \langle AB \rangle_P)$, where $\langle A \rangle_P$ is the pure subgroup in M generated by A.

Lemma

For elements a in models of \mathbb{K}_p

if
$$b \not \downarrow_A B$$
 then $b \not \downarrow_A^{\varepsilon} B$ for every $\varepsilon < d(b, \langle A \rangle_P)$.

< E

Image: A math a math

Finding a pregeometry in \mathfrak{M}^{eq}

Let D be the set of all realisations of some unbounded $p = Lstp^w(a/A)$.

Let *E* be an *A*-invariant equivalence relation. Denote $a^* = a/E$. We define in D/E a closure operator by

$$a^* \in cl(b_1^*,\ldots,b_n^*)$$

if for all $a' \in a^*$ and $b'_i \in b^*_i$, $i = 1, \ldots, n$,

$$a' \not\downarrow_A b'_1 \dots b'_n$$

For an arbitrary $B^* \subseteq D/E$ we define $a^* \in cl(B^*)$ if $a^* \in cl(B_0^*)$ for some finite $B_0^* \subseteq B^*$.

Finding a pregeometry in \mathfrak{M}^{eq}

Theorem

Assume A is finite or the perturbation system is almost summable. If there is $\varepsilon > 0$ such that for all $b \in D$ and $B \subseteq D$ the following are equivalent:

イロト イヨト イヨト

Finding a pregeometry in \mathfrak{M}^{eq}

Theorem

Assume A is finite or the perturbation system is almost summable. If there is $\varepsilon > 0$ such that for all $b \in D$ and $B \subseteq D$ the following are equivalent:

•
$$b \not\downarrow_A B$$

• $b \not\downarrow_A^{>\varepsilon} B$
• for all $c \in D$ there exists $b' \in b^*$ such that $c \downarrow_{AB}^{>\varepsilon} b'$
then $(D/E, cl)$ is a pregeometry.

Theorem

In \mathbb{K}_p the condition above holds for a type of a single element when E is chosen to be the relation \mathcal{J}_A .

References

🔋 Åsa Hirvonen and Tapani Hyttinen.

Measuring dependence in metric abstract elementary classes with perturbations. Submitted (arXiv:1311.3806).

- Åsa Hirvonen and Tapani Hyttinen. Metric abstract elementary classes with perturbations. Fund. Math., 217(2):123–170, 2012.
- Tapani Hyttinen and Saharon Shelah. Strong splitting in stable homogeneous models. Ann. Pure Appl. Logic, 103(1-3):201–228, 2000.