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Why independence?

aim: classification of structures by sets of invariants

well behaved independence notions give dimensions

generalising what forking does in first order theories
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Challenges of metric structures

not FO-axiomatisable

“look better if blurred”
I measure size wrt densities
I allowing for small changes (perturbations) make model classes even better behaved

(we come down in the stability hierarchy)
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Our approach - homogeneous model theory

consider “elementary” submodels of a strongly homogeneous monster model

use syntax-free approach (metric AEC)

work with respect to perturbations

look at “classical” independence notion from homogeneous model theory

approximate this notion
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Galois-types

When looking at submodels of a strongly homogeneous monster M, Galois-types are orbits:

Definition

tg (a/A) = tg (b/A)

if and only if
there is f ∈ Aut(M/A) s.t. f (a) = b.

Åsa Hirvonen (University of Helsinki) Independence in metric structures August 27, 2014 5 / 22



Metrics on the type space

Definition (The inf-distance metric)

d(p, q) = inf{d(a, b) : a |= p, b |= q}

Definition (A perturbation metric)

dp(tg (a/∅), tg (b/∅)) ≤ ε

if there are ε-automorphisms f and g of the monster model such that d(f (a), b) ≤ ε and
d(g(b), a) ≤ ε.
Extend to types over parameters by:

dp(tg (a/A), tg (b/A)) = sup{dp(tg (ac/∅), tg (bc/∅)) : c ∈ A finite}.

With suitable assumptions on the ε-isomorphisms this defines a metrisable (diagonal)
uniformity.
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A note on stability

We have three ways of measuring stability:
classical |A| ≤ λ⇒ card(S(A)) ≤ λ

metric |A| ≤ λ⇒ dens(S(A)) ≤ λ

with perturbations |A| ≤ λ⇒ dens(S(A)) ≤ λ
with respect to a perturbation metric dp
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Independence from homogeneous model theory

Fact (Hyttinen–Shelah [HS00])

In a stable homogeneous class there is an independence notion, defined via strong splitting,
that works well over saturated enough models.
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Assumptions used

We work with a metric abstract elementary class with perturbations (K,4,Fε)ε≥0 that

has arbitrarily large models

satisfies the joint embedding property

satisfies a form of amalgamation wrt F:

is homogeneous

has the perturbation property

has complete type spaces

is dp-superstable (i.e. stable wrt dp from some λ onwards)

is weakly simple
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Åsa Hirvonen (University of Helsinki) Independence in metric structures August 27, 2014 9 / 22



Assumptions used

We work with a metric abstract elementary class with perturbations (K,4,Fε)ε≥0 that

has arbitrarily large models

satisfies the joint embedding property

satisfies a form of amalgamation wrt F:

is homogeneous

has the perturbation property

has complete type spaces

is dp-superstable (i.e. stable wrt dp from some λ onwards)

is weakly simple
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Measuring independence, background

We have an independence notion and a notion of distance between types.

But independence is not really a property of Galois types but of Lascar strong types. So
we develop a measure of distance for Lascar types.
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Lascar strong types and Lascar types

Definition

Two tuples a and b have the same Lascar strong type over A,

Lstp(a/A) = Lstp(b/A)

if E (a, b) holds for any A-invariant equivalence relation with a bounded number of equivalence
classes.

Definition (Hyttinen–Kesälä)

Two tuples a and b have the same Lascar type over A,

Lstpw (a/A) = Lstpw (b/A)

if for all finite B ⊆ A, Lstp(a/B) = Lstp(b/B).

By homogeneity Lstpw (a/A) = Lstpw (b/A) implies tg (a/A) = tg (b/A).
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Measuring independence

We define dp
a , a distance-like relation on the space of Lascar types, that defines a metrisable

topology.

Definition
1 For a finite set A we define

dp
a (Lstp(a/A), Lstp(b/A)) = sup{dp(tg (a/B), tg (b/B)) : A ⊆ B finite, B ↓A ab}.

2 For any set B we then define

dp
a (Lstpw (a/B), Lstpw (b/B)) = sup{dp

a (Lstp(a/A), Lstp(b/A)) : A ⊆ B, A finite}.
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Measuring independence, ε-freeness

Our measure of independence is given by ε-freeness:

Definition

For ε > 0, we write
a ↓εA B

if for all finite C ⊆ A, there is finite C ⊆ D ⊆ A and b such that

Lstp(b/D) = Lstp(a/D), b ↓D AB and dp
a (Lstpw (b/AB), Lstpw (a/AB)) ≤ ε.

By a ↓0
A B we mean that a ↓εA B holds for all ε > 0.
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Results

Theorem

Under the given assumptions

1 a ↓0
A B if and only if a ↓A B.

2 For all A and a, there is countable B ⊆ A such that a ↓B A.

Note: By [HS00], in a stable homogeneous classes there is κ(K) < i(2LS(K))+ such that for all
a and λ(K)-saturated A there is A ⊆ A of power < κ(K) such that a ↓A A.
But even in the first-order case κ(K) cannot be chosen to be smaller than LS(K)+.
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Results

Theorem

Under the given conditions, K is simple, in the given setting superstability and weak simplicity
imply simplicity.

Note that weak simplicity does not in general imply simplicity. There is an example of a class
that is homogeneous, stable and weakly simple but not simple.
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Results

Theorem

If the class K is stable and weakly simple then T.F.A.E.

(i) K is dp-superstable.

(ii) For no ε > 0 is there an infinite ↓ε-forking sequence.

(iii) For all a, A and ε > 0, there is a finite B ⊆ A such that a ↓εB A.
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Example: p-adic integers

Definition

The p-adic norm, ‖‖p is defined by

‖a‖p = p−max{k:pk |a}.

The p-adic integers, Zp, is the completion of the integers in the p-adic topology.

The p-adic integers for an ultrametric space, i.e. a metric space where the triangle inequality
is strengthened to

d(x , y) ≤ max{d(x , z), d(z , y)}.
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p-adics as a MAEC

Let Kp be the class of completions of direct sums of copies of the p–adic integers, Z(κ)
p , with

κ any cardinal.

Let A 4 B if A is a closed pure subgroup of B.

Use the infimum distance metric.

This gives a class satisfying the assumptions.
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Independence in Kp

Lemma

For elements a ∈ M ∈ Kp, A,B ⊂ M, a ↓A B if and only if d(a, 〈A〉P) = d(a, 〈AB〉P), where
〈A〉P is the pure subgroup in M generated by A.

Lemma

For elements a in models of Kp

if b 6 ↓A B then b 6 ↓εA B for every ε < d(b, 〈A〉P).
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Finding a pregeometry in Meq

Let D be the set of all realisations of some unbounded p = Lstpw (a/A).

Let E be an A-invariant equivalence relation. Denote a∗ = a/E . We define in D/E a closure

operator by
a∗ ∈ cl(b∗1, . . . , b

∗
n)

if for all a′ ∈ a∗ and b′i ∈ b∗i , i = 1, . . . , n,

a′ 6 ↓A b′1 . . . b
′
n.

For an arbitrary B∗ ⊆ D/E we define a∗ ∈ cl(B∗) if a∗ ∈ cl(B∗0 ) for some finite B∗0 ⊆ B∗.
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Finding a pregeometry in Meq

Theorem

Assume A is finite or the perturbation system is almost summable. If there is ε > 0 such that
for all b ∈ D and B ⊆ D the following are equivalent:

1 b 6 ↓A B

2 b 6 ↓>εA B

3 for all c ∈ D there exists b′ ∈ b∗ such that c ↓>εAB b′.

then (D/E , cl) is a pregeometry.

Theorem

In Kp the condition above holds for a type of a single element when E is chosen to be the
relation 6 ↓A.
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