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Introduction

Homogeneous structures have interesting properties from a
model theoretic point of view. They also play a role in such diverse
topics as Ramsey theory, constraint satisfaction problems,
permutation group theory and topological dynamics.

The study of simple theories/structures has developed, via
stability theory, from Shelah’s classification theory of complete
first-order theories and their models. The central tool in this
context is a sufficiently well behaved notion of independence.

I will present some results in the intersection of these areas, i.e. we
consider structures that are both simple and homogeneous.
References (containing more references) follow at the end.
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Homogeneous structures: definitions

Suppose that V is a finite and relational vocabulary/signature.

A countable V -structure M, which may be finite or infinite, is
homogeneous if the following equivalent conditions are satisfied:

1 M has elimination of quantifiers.

2 Every isomorphism between finite substructures of M can be
extended to an automorphism of M.

3 M is the Fräıssé limit of an amalgamation class.

Examples: The random graph, or Rado graph; (Q, <); generic
triangle-free graph; more generally, 2ℵ0 examples constructed by
forbidding substructures (Henson 1972).

Via the Engeler, Ryll-Nardzewski, Svenonious characterization of
ω-categorical theories:
every infinite homogeneous structure has ω-categorical complete
theory.
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Classifications of some homogeneous structures

Being homogeneous is a strong condition when restricted to
certain classes of structures.

The following classes of structures, to mention a few, have been
classified, where ‘homogeneous’ implies ‘countable’, and
‘countable’ includes ‘finite’:

1 homogeneous partial orders (Schmerl 1979).
2 homogeneous (undirected) graphs (Gardiner, Golfand – Klin,

Sheehan, Lachlan – Woodrow 1974–1980).
3 homogeneous tournaments (Lachlan 1984).
4 homogeneous directed graphs (Cherlin 1998).
5 homogeneous stable V -structures for any finite relational

vocabulary V (Lachlan, Cherlin... 80ies).
6 homogeneous multipartite graphs (Jenkinson, Truss, Seidel

2012).

Note: The case 4 contains uncountably many structures, by a

well-known result of Henson (1972).
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Simple theories/structures

A complete theory (with only infinite models) T is simple if
there is a notion of (in)dependence – with certain properties,
like symmetry – on all of its models.

Suppose that T is simple. Then “SU-rank” can be defined on
types of T (with or without parameters). Then

T is supersimple ⇐⇒ the SU-rank is ordinal valued for
every type of T , and

T is 1-based ⇐⇒ the notion of (in)dependence behaves
“nicely” on all models of T .

T has trivial dependence if whenever M |= T ,
A,B,C ⊆Meq (M extended by imaginaries) and A is
dependent on B over C , then there is b ∈ B such that A is
dependent on {b} over C .

An infinite structure is ω-categorical, simple, supersimple, 1-based
or has trivial dependence if its complete theory has the corresponding
property.
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Simple theories/structures (continued)

The SU-rank of a structure is the supremum (if it exists) of the
SU-ranks of all 1-types of its complete theory.

Example: the random graph is supersimple, has SU-rank 1, is
1-based and has trivial dependence.

All known examples of simple homogeneous structures are
supersimple with finite SU-rank, are 1-based and have trivial
dependence.

Two facts:

1 If T is ω-categorical and supersimple with finite SU-rank, then
T is 1-based if and only if every definable (with parameters)
A ⊆ Meq with SU-rank 1 is 1-based for any choice ofM |= T .

2 If M is homogeneous, simple and 1-based, then it is
supersimple with finite SU-rank and has trivial dependence.
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Finiteness of rank

Binary vocabulary: a finite relational vocabulary in which all
symbols have arity ≤ 2.

Binary structure: a V -structure for some binary vocabulary V .

A. Aranda Lopez [1] has proved that if M is binary, simple and
homogeneous, then its SU-rank cannot be ωα for any α ≥ 1.
In fact we have:

Theorem 1 [2] Suppose that M is a structure which is binary,
simple and homogeneous. Then M is supersimple with finite
SU-rank (which is bounded by the number of 2-types over ∅).

This implies that knowledge about properties such as 1-basedness
and trivial dependence for binary simple homogeneous structures
can be derived from the corresponding properties of definable sets
of SU-rank 1.
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Binary random structures

Let V be a binary vocabulary and let M be a countable
homogeneous V -structure.

Forbidden configuration (of M): a V -structure which cannot be
embedded into M.

Minimal forbidden configuration (of M): a forbidden
configuration A such that no proper substructure of A is a
forbidden configuration.

M is a binary random structure if it does not have a minimal
forbidden configuration of cardinality ≥ 3.

Example: random graph.
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Canonically embedded structures

Roughly speaking: Meq is the extension of M with imaginary
elements, i.e. elements that correspond to equivalence classes of
∅-definable equivalence relations on Mn (for 0 < n < ω).

Suppose that A ⊆ M and that C ⊆ Meq is A-definable (i.e.
definable with parameters from A).

The canonically embedded structure of Meq over A with
universe C is the structure C which for every 0 < n < ω and
A-definable relation R ⊆ Cn has a relation symbol which is
interpreted as R (and C has no other symbols).

Note that for all 0 < n < ω and all R ⊆ Cn,
R is ∅-definable in C ⇐⇒ R is A-definable in Meq.
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Simple homogeneous structures and canonically embedded
structures with rank 1

Let M and N be two structures which need not necessarily have
the same vocabulary.

N is a reduct of M if M = N and for all 0 < n < ω and all
R ⊆ Mn: R is ∅-definable in N =⇒ R is ∅-definable in M.

Theorem 2 [3] Suppose that M is a binary, homogeneous, simple
structure with trivial dependence. Let A ⊆ M be finite and suppose
that C ⊆ Meq is A-definable and only finitely many 1-types over ∅
are realized in C. Assume that SU(c/A) = 1 for every c ∈ C,
where SU(a/A) is the SU-rank of the type tp(c/A). Let C be the
canonically embedded structure of Meq over A with universe C.
Then C is a reduct of a binary random structure.

Note: If M is homogeneous, simple and 1-based, then dependence
is trivial. All known homogeneous simple structures are 1-based.
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Homogeneous, simple and 1-based structures

Is it possible to obtain some relatively detailed knowledge about
structures that are homogeneous, simple and 1-based?

Because they have trivial dependence and can be “coordinatized”
they cannot be extremely complicated.

It is reasonable to start the inquiry by considering binary,
primitive, simple homogeneous structures.

M is primitive if there is no nontrivial equivalence relation on M
which is ∅-definable.

Fact, which is straightforward to prove: Suppose that M is
homogeneous (and simple) and has a nontrivial equivalence
relation E ⊆ M2. Let N be one of the E-classes. Then the
substructure of M with universe N is homogeneous (and simple).
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Homogeneous, simple and 1-based structures (cont.)

A. Aranda Lopez [1] has shown:

If M is a binary, primitive, homogeneous, simple and 1-based
structure with SU-rank 1, then M is a binary random structure.

If we remove the assumption about the SU-rank being 1 we get:

Theorem 3. [4] Suppose that M is a binary, primitive,
homogeneous, simple and 1-based structure. Then M is strongly
interpretable in a binary random structure.

That M is strongly interpretable in N rougly means that there
are integers k1, . . . , km such that every element a ∈ M can be
identified with a ki -tuple b̄a ∈ N i for some i in such a way that
each ∅-definable relation inM can be identified with an ∅-definable
relation on tuples form N corresponding to elements in M.

The well-known notion of interpretability is a generalization of
strong interpretability.
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