
Some Turing-Complete Extensions of First-Order
Logic

Antti Kuusisto

Technical University of Denmark
and

Unversity of Wroc law

D∗

Extend FO as follows.

I Add dependence, independence, inclusion and exclusion atoms
to the language.

I Add the formula formation rule ϕ 7→ Iy ϕ.

A,X |= Iyϕ iff there is a finite nonempty set S of fresh elements
such that

A + S , X [S/y] |= ϕ.

D∗

Theorem
D∗ captures RE.

Proof D∗ is contained in RE: given a sentence ϕ of D∗, construct
a nondeterministic Turing machine that first guesses for each
subformula Iy ψ a finite cardinality to be added to the input
model, and then checks if ϕ is satisfied when the guessed
cardinalities are used.

Define a predicate logic that extends ESO and captures RE. Show
that the predicate logic translates into D∗.

The language of LRE consists of formulae IY ψ, where ψ is a
formula of ESO.

A |= IY ψ iff there exists a finite nonempty set S such that

I S ∩ A = ∅
I A + S ,Y 7→ S |= ψ.

Theorem
LRE captures RE.

Proof.
Let TM be a Turing machine. It is routine to write a formula
IY ∃Z β such that A |= IY ∃Z β iff there exists a model A + C,
where C encodes the computation table of an accepting
computation of TM on the input enc(A).

For the converse, given a sentence IY δ of LRE, we can write a
Turing machine that first non-deterministically provides a number
of fresh points n to be added to an input model A, and then
checks if δ holds in the extended model.

Let D+ denote D∗ without operators I. Assume we have a
translation Ty

Y from dependence logic into D+ such that

(M,Y 7→ S), {∅} |= ϕ iff M, {∅}[S/y] |= Ty
Y (ϕ).

Then we are done. Let (·)# denote the translation from ESO into
dependence logic. We have

A |= IY ∃Xψ ⇔
(
A + S ,Y 7→ S

)
|= ∃Xψ for some S

⇔
(
A + S ,Y 7→ S

)
, {∅} |=

(
∃Xψ

)#
for some S

⇔ A + S , {∅}[S/y] |= Ty
Y

((
∃Xψ

)#)
for some S

⇔ A, {∅} |= Iy Ty
Y

((
∃Xψ

)#)

1. (Y (x))∗ := x ⊆ y

2. (¬Y (x))∗ := x |y
3. ϕ∗ := ϕ for other literals ϕ.

4. (ϕ ∧ ψ)∗ := ϕ∗ ∧ ψ∗

5. (ϕ ∨ ψ)∗

:= ∃v
(

v⊥z y ∧
(

(ϕ∗ ∧ v = u) ∨ (ψ∗ ∧ v = u′)
))

,

6. (∃x ϕ)∗ := ∃x
(
x⊥z yv ∧ ϕ∗

)
,

7. (∀x ϕ)∗ := ∀x (ϕ∗)

Ty
Y (ϕ) := ∃u∃u′

(
u 6= u′ ∧ =(u) ∧ =(u′) ∧ ϕ∗).

Extend FO by operators that

1. allow addition of fresh points to the domain,

2. enable recusive looping when playing the semantic game.

Leads to a Turing-complete logic L with a game-theoretic
semantics.

Logic L

Syntax: extend FO by the following constructs:

1. Ix ϕ

2. IRx1, ..., xk ϕ

3. DRx1, ..., xk ϕ

4. k ϕ, where k ∈ N.

5. If k is (a symbol representing) a natural number, then k is an
atomic formula.

Game-theoretic semantics

Extend the game-theoretic semantics of first-order logic.

In a position (A, f ,#, Ix ϕ), the domain is extended by one new
isolated point u. The play continues from the position
(A ∪ {u}, f ,#, ϕ).

Game-theoretic semantics

I In a position (A, f ,+, IRx1, ..., xk ϕ), the player ∃ chooses a
k-tuple (u1, ..., uk). The play continues from the position
(A∗, f ∗,+, ϕ), where

I f ∗ = f [x1 7→ u1, ..., xk 7→ uk],
I A∗ is A with the tuple (u1, ..., usk) added to R.

I In a position (A, f ,−, IRx1, ..., xk ϕ), the player ∀ chooses a
k-tuple (u1, ..., uk). The play continues from te position
(A∗, f ∗,−, ϕ).

I The operator DRx1, ..., xk is similar to IRx1, ..., xk , but a tuple
is deleted rather than added.

Game-theoretic semantics

I If a position (A, f ,+, k) is reached, where k ∈ N, then the
player ∃ chooses a subformula kψ of the original formula the
game begun with. The play continues from the position
(A, f ,+, ψ).

I If a position (A, f ,−, k) is reached, then the play continues as
above, but the player ∀ makes the choice.

I If a position (A, f ,#, kϕ) is reached, the game continues
from the position (B, f ,#, ϕ).

Game-theoretic semantics

I The game is played for at most ω rounds.

I A play can be won only by reaching a first-order atom.

I The winning conditions are exactly as in FO.

We write A, f |=+ ϕ iff ∃ has a winning strategy in the game
G (A, f ,+, ϕ).

A, f |=− ϕ iff ∀ has a winning strategy in the game G (A, f ,+, ϕ).

Turing-completeness

Theorem
Let τ be a nonempty vocabulary. Let TM be a Turing machine
that operates on encodings of finite τ -models. Then there exists a
sentence ϕ of L such that the following conditions hold for every
finite τ -model A.

1. TM accepts enc(A) iff A |=+ϕ.

2. TM rejects enc(A) iff A |=−ϕ.

Proof sketch.
The formula ϕ is essentially of the type

1
(∧
instr ∈ I

ψinstr

)
,

where

I I is the set of instructions of TM.

I The computation of TM is encoded using word models that
encode the machine tape contents.

I The word models are built by adding new points and adding
new tuples to relations.

I The state and head position of TM are encoded by using
variable symbols x , whose interpretation can be dynamically
altered using quantification.

I Let instr lead to a non-final state. The ψinstr is of the type(
ψstate ∧ ψtape position

)
→

(
ψnew state ∧ ψnew tape position ∧ 1

)

I Let instr lead to an accepting final state. The ψinstr is of the
type (

ψstate ∧ ψtape position

)
→ >.

I Let instr lead to a rejecting final state. The ψinstr is of the
type (

ψstate ∧ ψtape position

)
→ ⊥.

Turing-completeness

Theorem
Let τ be a nonempty vocabulary. Let ϕ be a sentence of L. Then
there exists a Turing machine TM such that the following
conditions hold for every finite τ -model A.

1. TM accepts enc(A) iff A |=+ϕ.

2. TM rejects enc(A) iff A |=−ϕ.

Proof. TM non-deterministically provides a number n ∈ N.

TM enumerates all plays of at most n moves.

TM accepts iff the player ∃ has a strategy that leads to a win in
every play with up to n moves.

Importantly, ∃ cannot have a winning strategy that results in
arbitrarily long plays. Assume the contrary.

Each position can have only finitely many successor positions.
Thus by König’s lemma, the game tree restricted to the strategy of
∃ has an infinite path. Thus the strategy of ∃ is not a winning
strategy.

	First Main Section

