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Motivation

As a mathematician, I cannot afford to ignore classical logic, which is
likely to remain the logic of 99% of non-foundational mathematics
during my lifetime.

But, as a topologist interested in things like higher-dimensional group
theory, I can no longer ignore Martin-Löf type theory (and hence also
intuitionistic logic) in my non-foundational research.

However, few people seem to have ever cared to understand
intuitionistic logic from a classical perspective that makes sense to a
non-foundationally inclined mathematician.
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Intuitionistic logic as the logic of problem solving

A. Kolmogoroff, Zur Deutung der intuitionistischen Logik (1932):

“On a par with theoretical logic, which systematizes schemes of proofs of
theoretical truths, one can systematize schemes of solutions of problems —
for example, of geometric construction problems. [...] Thus, in addition to
theoretical logic, a certain new calculus of problems arises. [...]

Surprisingly, the calculus of problems coincides in form with Brouwer’s
intuitionistic logic, as recently formalized by Heyting. [In fact, we shall
argue] that [intuitionistic logic] should be replaced with the calculus of
problems, since its objects are in reality not theoretical propositions but
rather problems.”
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Kolmogorov’s argument for changing the terminology was philosophical;
here is a psychological one.

When including intuitionistic logic in a broader context that also
includes classical logic, the words “proposition” and “proof” are already
reserved for the classical notions, so one needs new words for the
intuitionisic notions.

The words “problem” and “solution” serve this purpose ideally, that is,
in full agreement with conventional mathematical practice.
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Example

α: Divide any given angle into three equal parts with compass and
(unmarked) ruler

α ∨ ¬α: Divide any given angle into three equal parts with compass and
ruler or show that the assumption that this can be done leads to a
contradiction

not a trivial problem (took a couple of millennia to solve);

the Law of Excluded Middle would not help a student to solve this
problem on an exam (in Galois theory).
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Intended meaning of the word “Problem”

“Problem” not as in open problem, but as in chess problem, initial value
problem, geometric construction problem.

Kolmogorov: Aufgabe (not Problem); задача (not проблема)

English: task, assignment, exercise, challenge, aim, mission.

Martin-Löf (1984): “The [interpretation of Kolmogorov] is very close to
programming. ‘a is a method [of solving the problem (doing the task) A]’
can be read as ‘a is a program [...] which meets the specification A’. In
Kolmogorov’s interpretation, the word problem refers to something to be
done and the word [solution] to how to do it.”
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Problems vs. Propositions

Problems cannot be asserted; they cannot be true or false.

Problems Propositions

Prove p
p holds

there exists a proof of p

Prove that G , H are isomorphic

Find an isomorphism G → H
G is isomorphic to H

(depending on formalization, one proof might correspond to several
isomorphisms or to no explicit isomorphism)
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Kolmogorov’s letter to Heyting

Kolmogorov’s 1931 letter to Heyting (published in 1988):

“Each ‘proposition’ in your framework belongs, in my view, to one of two
sorts:
(α) p expresses hope that in prescribed circumstances, a certain
experiment will always produce a specified result. [...]
(β) p expresses the intention to find a construction. [...]

I prefer to keep the name proposition (Aussage) only for propositions of
type (α) and to call “propositions” of type (β) simply problems
(Aufgaben). Associated to a proposition p are the problems ∼ p (to derive
contradiction from p) and + p (to prove p).”

Sergey Melikhov (Steklov Math Institute)A logic of problems and propositions, ... Tampere, 08.14 9 / 42



Kolmogorov’s Program

A. N. Kolmogorov, On the papers on intuitionistic logic, in: Selected
Works of A. N. Kolmogorov (1985; transl. 1991):

“The [1932 paper] was written in hope that with time, the logic of solution
of problems will become a permanent part of [a standard] course of logic.
Creation of a unified logical apparatus dealing with objects of two types —
propositions and problems — was intended.”

We will now describe such a formal system, QHC, which is
a conservative extension of both the intuitionistic predicate calculus, QH,
and the classical predicate calculus, QC.

Related work: Linear logic, Artëmov (1994– ), Japaridze (2002– ),
Liang–Miller (2012– )
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QHC calculus: Syntax

Atomic formulas: problem symbols, propositional symbols (possibly
depending on variables that all range over the same domain of
discourse) and the constant ⊥

Formulas are of two types: problems (denoted by Greek letters) and
propositions (denoted by Roman letters)

Classical connectives: propositions → propositions
Intuitionistic connectives: problems → problems

Two new unary connectives are type conversion symbols:
!: propositions → problems, ?: problems → propositions
Intended reading: !p =“Prove p”; ?α =“α has a solution”

There are two types of judgements:
` α, with intended meaning “A solution of α is known”
` p, with intended meaning “p is true”

Sergey Melikhov (Steklov Math Institute)A logic of problems and propositions, ... Tampere, 08.14 11 / 42



QHC calculus: Syntax

Atomic formulas: problem symbols, propositional symbols (possibly
depending on variables that all range over the same domain of
discourse) and the constant ⊥

Formulas are of two types: problems (denoted by Greek letters) and
propositions (denoted by Roman letters)

Classical connectives: propositions → propositions
Intuitionistic connectives: problems → problems

Two new unary connectives are type conversion symbols:
!: propositions → problems, ?: problems → propositions
Intended reading: !p =“Prove p”; ?α =“α has a solution”

There are two types of judgements:
` α, with intended meaning “A solution of α is known”
` p, with intended meaning “p is true”

Sergey Melikhov (Steklov Math Institute)A logic of problems and propositions, ... Tampere, 08.14 11 / 42



QHC calculus: Syntax

Atomic formulas: problem symbols, propositional symbols (possibly
depending on variables that all range over the same domain of
discourse) and the constant ⊥

Formulas are of two types: problems (denoted by Greek letters) and
propositions (denoted by Roman letters)

Classical connectives: propositions → propositions
Intuitionistic connectives: problems → problems

Two new unary connectives are type conversion symbols:
!: propositions → problems, ?: problems → propositions
Intended reading: !p =“Prove p”; ?α =“α has a solution”

There are two types of judgements:
` α, with intended meaning “A solution of α is known”
` p, with intended meaning “p is true”

Sergey Melikhov (Steklov Math Institute)A logic of problems and propositions, ... Tampere, 08.14 11 / 42



QHC calculus: Syntax

Atomic formulas: problem symbols, propositional symbols (possibly
depending on variables that all range over the same domain of
discourse) and the constant ⊥

Formulas are of two types: problems (denoted by Greek letters) and
propositions (denoted by Roman letters)

Classical connectives: propositions → propositions
Intuitionistic connectives: problems → problems

Two new unary connectives are type conversion symbols:
!: propositions → problems, ?: problems → propositions
Intended reading: !p =“Prove p”; ?α =“α has a solution”

There are two types of judgements:
` α, with intended meaning “A solution of α is known”
` p, with intended meaning “p is true”

Sergey Melikhov (Steklov Math Institute)A logic of problems and propositions, ... Tampere, 08.14 11 / 42



QHC calculus: Syntax

Atomic formulas: problem symbols, propositional symbols (possibly
depending on variables that all range over the same domain of
discourse) and the constant ⊥

Formulas are of two types: problems (denoted by Greek letters) and
propositions (denoted by Roman letters)

Classical connectives: propositions → propositions
Intuitionistic connectives: problems → problems

Two new unary connectives are type conversion symbols:
!: propositions → problems, ?: problems → propositions
Intended reading: !p =“Prove p”; ?α =“α has a solution”

There are two types of judgements:
` α, with intended meaning “A solution of α is known”
` p, with intended meaning “p is true”

Sergey Melikhov (Steklov Math Institute)A logic of problems and propositions, ... Tampere, 08.14 11 / 42



Problems vs. Propositions (revisited)

Problems Propositions

Prove p

!←−
−→
?

p holds

there exists a proof of p

Prove that G , H are isomorphic

Find an isomorphism G → H

!←−
−→
?

G is isomorphic to H
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QHC calculus: Axioms and inference rules

All axioms and inference rules of classical predicate calculus applied to
propositions (possibly involving ?, !).

All axioms and inference rules of intuitionistic predicate calculus
applied to problems (possibly involving ?, !).

New axioms and inference rules.

These are motivated by:

1 the problem solving / BHK interpretation

2 Kreisel’s addendum to the BHK; in Kolmogorov’s language, “every
solution of a problem α should include a proof that it does solve α”

3 Gödel’s axioms of “absolute proofs” — a proof-relevant version of
modal axioms of S4 (Lecture at Zilsel’s, 1938, published 1995)
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3 Gödel’s axioms of “absolute proofs” — a proof-relevant version of
modal axioms of S4 (Lecture at Zilsel’s, 1938, published 1995)

Sergey Melikhov (Steklov Math Institute)A logic of problems and propositions, ... Tampere, 08.14 13 / 42



The problem solving interpretation (Kolmogorov, 1932)

a solution of α ∧ β consists of a solution of α and a solution of β
a solution of α ∨ β consists of an explicit choice between α and β
along with a solution of the chosen problem

a solution of α→ β is a reduction of β to α; that is, a general
method of solving β on the basis of any given solution of α
⊥ has no solutions; ¬α is an abbreviation for α→ ⊥
a solution of ∀x α(x) is a general method of solving α(x0) for all
x0 ∈ D

a solution of ∃x α(x) is a solution of α(x0) for some explicitly chosen
x0 ∈ D

(Kolmogorov explicitly mentioned general method only in the ∀ clause.)

As long as intuitionistic logic per se is concerned, this is merely a rewording
of the so-called “BHK interpretation” (or rather vice versa, historically).
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Kreisel’s addendum

Schwichtenberg’s paradox: The problem

∀x , y , z , n Prove that xn + yn = zn → n ≤ 2

is trivial! (A simple calculator contains a general method M to verify the
inequality xn + yn 6= zn for any given x , y , z , n.)

What is hard is to prove that M actually succeeds on all inputs.

“Kreisel’s thesis”: every solution of a problem α should include a proof
that it does solve α.

(Parallel to Kreisel’s addendum to the BHK; arguably implicit in some
passages by Kolmogorov.)
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Gödel’s absolute proofs

Some constraints on what one could mean by a solution are imposed by the
problem solving interpretation. But if proofs are not solutions, what could
one mean by a proof?

Gödel’s Lecture at Zilsel’s (1938, published in 1995):
provability “understood not in a particular system, but in the absolute
sense (that is, one can make it evident)”
interpreted, in particular, as the modality � of S4
particular “absolute proofs” interpreted by a proof-relevant version of
S4 (also found in the work of Artëmov):

I
p

∃t t : p

I t : (p → q) → (s : p → t(s) : q)
I t : p → p
I t : p → t! : (t : p)
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I
p

∃t t : p

I t : (p → q) → (s : p → t(s) : q)
I t : p → p
I t : p → t! : (t : p)

Sergey Melikhov (Steklov Math Institute)A logic of problems and propositions, ... Tampere, 08.14 16 / 42
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QHC calculus: New axioms and inference rules

¬?⊥ ⇔ ?¬α→ ¬?α ⇔ ¬α
¬?α

(BHK)
α

?α

¬!?⊥ ⇔ !¬p → ¬!p ⇔ ¬p
¬!p

p

!p
(Gödel)

?(α→ β) → (?α→ ?β) (BHK) α→ !?α (Kreisel)
!(p → q) → (!p → !q) (Gödel) ?!p → p (Gödel)

?(α ∨ β) ↔ ?α ∨ ?β ⇔ !p ∨ !q → !(p ∨ q) (BHK)
?∃xα(x) ↔ ∃x?α(x) ⇔ ∃x!p(x) → !∃xp(x) (BHK)
?(α ∧ β) ↔ ?α ∧ ?β ⇔ !p ∧ !q ↔ !(p ∧ q) (BHK)
?∀xα(x) → ∀x?α(x) ⇔ ∀x!p(x) ↔ !∀xp(x) (BHK)

(the last two lines and all ← arrows are redundant)
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QHC calculus: Axioms and inference rules (cont’d)

Arguably the most controversial axiom is “soundness”: a proof of falsity
leads to absurdity.

!?⊥ → ⊥

This can be seen as a strong form of internal provability of consistency
(0 = ?⊥):

?!(?!0→ 0)

which itself does not need the soundness axiom (just like in S4).
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Intuitionistic ¬ explained via classical ¬

The following is proved using (inter alia) the soundness axiom:

¬α ↔ !¬?α

Kolmogorov (1932):
“We note that ¬a should not be understood as the problem ‘prove
insolubility of a’. In general, if ‘insolubility of a’ is considered as a fully
definite notion, we only obtain that ¬a implies insolubility of a, but not
vice versa.”

Heyting (1934):
being aware of the cited passage, refers to a solution of ¬a as a “proof of
impossibility to solve a”
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Galois connection
An easy consequence of the axioms:

α→ β

?α→ ?β

p → q

!p → !q

Thus ? and ! descend to monotone (=order-preserving) maps between the
Lindenbaum algebras posets of QC and QH.

Proposition: These monotone maps form a Galois connection:

?α→ p if and only if α→ !p

In other words, these two monotone maps constitute a pair of adjoint
functors when the two posets are regarded as categories.

Corollary: Up to equivalence, !p is the easiest among all problems α such
that ?α→ p; and ?α is the strongest among all propositions p such that
α→ !p.
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?! and !? as modalities
Another corollary: � := ?! induces an interior operator on the
Lindenbaum poset of QC; and ∇ := !? induces a closure operator on the
Lindenbaum poset of QH. That is,

� p → p

� p → �� p

p → q

� p → � q

α→ ∇α
∇∇α→ ∇α
α→ β

∇α→ ∇β

QH4\#1: Goldblatt, Grothendieck topology as geometric modality (1981)
QH4\#4: Artëmov–Protopopescu, Intuitionistic epistemic logic (2014)

QS4 QHC QH4�7→?! ∇7→!?

Interpretations: preserve derivability of formulas and rules.

?!p=“There exists a proof of p”; !?α=“Prove that α has a solution”
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Extension of Gödel’s �-interpretation

QS4 QHC QH

QS4
id

�7→?!

� -interpretation

Atomic problems turn into (new) atomic propositions (including ⊥,
which turns into the classical falsity 0), and get prefixed by �

Intuitionistic connectives turn into classical ones and get prefixed by �
(only → and ∀ really need to be prefixed)
? is erased, and ! is replaced by �

Proposition: This is a (sound) interpretation of QHC in QS4, extending
the Gödel �-translation and fixing QC.
Corollary 1: QHC is sound.
Corollary 2: QHC is a conservative extension of QS4.
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Extension of Kolmogorov’s ¬¬-interpretation

QC QHC QH

QH
¬¬-interpretation id

Atomic propositions turn into (new) atomic problems and get prefixed
by ¬¬
Classical connectives turn into intuitionistic ones and get prefixed by
¬¬ (only ∨ and ∃ really need to be prefixed)
! is erased, and ? is replaced by ¬¬

Proposition: This is a (sound) interpretation of QHC in QH, extending the
Kolmogorov ¬¬-translation and fixing QH.
Corollary: QHC is a conservative extension of QH.
Question: Is it a conservative extension of QH4?
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Degenerate topological models

QHC
� -interpretation−−−−−−−−−−→ QS4

Topological model−−−−−−−−−−−→ subsets of X

propositions 7→ arbitrary subsets of X
problems 7→ open subsets of X
! 7→ Int (topological interior)
? 7→ id.

QHC
¬¬-interpretation−−−−−−−−−−−→ QH

Topological model−−−−−−−−−−−→ open subsets of X

problems 7→ open subsets of X
propositions 7→ regular open subsets of X
? 7→ Int Cl (interior of closure)
! 7→ id.

Proposition: Out of 11 interesting independent principles for QHC, 4 hold

in all �-models, 6 hold in all ¬¬-models, and one (the ?-principle:
?α

α
)

holds in both �- and ¬¬-models.
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Lafont’s Thesis and proof relevance
Lafont’s Thesis: All (classical) proofs of any (classical) proposition are
equivalent

Lafont’s Theorem: ... in a certain natural sense going back to Gentzen’s
proof of cut elimination.

(J.-Y. Girard, Proofs and Types (1989), Appendix B by Y. Lafont)

For intuitionistic logic, Lafont’s thesis certainly fails. Indeed, solutions of a
problem such as Find a solution of the equation x2 = 1 are arguably very
distinct if they lead to different answers (i.e., different roots).

(Functional extensionality.)

By Lafont’s thesis, any problem of the form !p has essentially only one
solution. Thus ∇ = !? squashes all solutions into one.

So ∇ is similar to the squashing/bracket operator in type theory:
Awodey–Bauer, Propositions as [types] (2004).
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So ∇ is similar to the squashing/bracket operator in type theory:
Awodey–Bauer, Propositions as [types] (2004).
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∇-interpretation of QHC in itself

QS4 QHC QH

QS4 QHC QH4

�7→?!

id ∇-translation

�7→?!

∇7→!?

Prefix all intuitionistic connectives (or just ∨ and ∃) and all atomic
problems with !? (respectively, with ∇).

Proposition: This is an interpretation on formulas, and its restrictions to
QH and to QS4 are faithful on formulas.

Corollary: QHC and QH4 each contain an unintended “squashed” (i.e.,
∇-translated) copy of QH.

Proposition:
∇(∇α ∨ ¬∇α)

∇α ↔ ¬¬α
is a derivable rule of QH4 QHC.

LEM for the squashed QH ⇔ collapse of ∇ (i.e., ∇ = ¬¬).
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Proof-relevant topological models

QHC leads to a new paradigm that views intuitionistic logic not as an
alternative to classical logic that criminalizes some of its principles, but as
an extension package that upgrades classical logic without removing it. The
main purpose of the upgrade is proof-relevance, or “categorification”.

Topological models are in fact models of the squashed QH. Good models of
the “true” QH should be proof-relevant.

Palmgren (2004): models of QH in LCCCs with finite sums
(Suddenly) This includes the topos of sheaves
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Sheaf models of QHC
D set
B topological space

variables of the language 7→ variables running over D

atomic propositions 7→ subsets of B (with same variables)
classical connectives 7→ set-theoretic operations
` p is interpreted by: p is represented by the entire B for each
valuation of the free variables of p

atomic problems 7→ sheaves (of sets) on B (with same variables)
intuitionistic connectives 7→ standard operations on sheaves
` α is interpreted by: α is represented by a sheaf with a global section
for each valuation of the free variables of α

? 7→ “support”, SuppF = {b ∈ B | Fb 6= ∅}
! 7→ “characteristic sheaf”, Char S = (IntS ↪→ B)
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Example
f : X → B continuous map

Problem: Find a solution of the equation f (x) = b

f −1(b) = the set of solutions

If F is the sheaf of sections of f , the stalk

Fb = the set of stable solutions

For example, if f : R→ R is a polynomial, the stable solutions of f (x) = b
are the roots of f (x)− b of odd multiplicity.

The parameter b ∈ B can be thought of as experimental data that contains
noise. So b is only known to us up to a certain degree of precision, and we
wish to be certain that a solution of the equation does not disappear when
our knowledge of b improves (cf. Brouwer’s “all functions are continuous”).

With this in mind, our problem is essentially a sheaf!
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Sheaf models of QHC: Examples
|?α| = Supp |α| (always open)
|!p| = Char |p| = Char(Int |p|)

�: |?!p| = Supp(Char(Int |p|)) = Int |p|
∇: |!?α| = Char(Supp |α|) = “squashed” |α|

|¬α| = |!¬?α| = Char(Int(B \ Supp |α|))

no such simple formula for implication: Supp(Hom(F ,F ′)) is not
determined by SuppF and SuppF ′

|¬¬α| = Char(Int Cl(Supp |α|)): “squashed and regularized”

∇α→ ¬¬α, but not conversely

|?(α ∨ β)| = Supp |α| t |β| = Supp |α| ∪ Supp |β| = |?α∨?β|
|?(α ∧ β)| = Supp |α| × |β| = Supp |α| ∩ Supp |β| = |?α∧?β|
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Sheaf models of QHC: On completeness

Warning: Topological �-models:

QHC
� -interpr.−−−−−−→ QS4

Topol. model−−−−−−−→ Subsets / open subsets of X

do not coincide with those sheaf models where atomic problems are
modelled by characteristic sheaves of open sets.

Indeed,

CharU t CharV 6= Char(U ∪ V ), unless U ∩ V = ∅.

Instead, they coincide with

QHC
∇-interpr.−−−−−−→ QHC Sheaf model−−−−−−−→ Subsets of / sheaves on X

Question: Are sheaf models complete as models of QH, QHC?

Remark: Each of the 11 principles fails in some sheaf model.
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Recovering Medvedev–Skvortsov models
Y = {0, 1} with the Alexandrov topology of the poset 0 < 1.

Open sets: ∅, {1}, Y .

A sheaf (⇔ presheaf) F on Y amounts to two sets F0, F1 (the stalks) and
a map F0 → F1 (the restriction F(Y )→ F({1})).

We’ll only look at sheaves for which this map is injective. In this case F
amounts to a pair (F0,F1) with F0 ⊂ F1.

If F = G ×H, then (F1,F0) = (G1 ×H1,G0 ×H0)

If F = G t H, then (F1,F0) = (G1 tH1,G0 tH0)

If F = Hom(G,H), then
(F1,F0) = (HG11 , {φ : G1 → H1 | φ(G0) ⊂ H0})

If F =
∏

d∈D Fd , then (F1,F0) = (
∏

d∈D Fd
1 ,

∏
d∈D Fd

0 )

If F =
⊔

d∈D Fd , then (F1,F0) = (
⊔

d∈D Fd
1 ,

⊔
d∈D Fd

0 )
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Recovering Medvedev–Skvortsov models (cont’d)

Medvedev: “finite problems”, 1962; Skvortsov: “transfinite problems”, 1979

In a model, each atomic formula αi is assigned a set Si .

Given a formula φ of QH and a collection C of subsets Ti ⊂ Si , we parse
the connectives of φ as above to get from the pairs (Si ,Ti ) a pair (S ,TC ).
Note that S does not depend on C .

Then � φ means that
⋂

C TC 6= ∅, where C runs over
P := 2S1 × 2S2 × . . . .

In terms of sheaves: Since S does not depend on C , the sheaves over
{0, 1} corresponding to the pairs (S ,TC ), C ∈ P , combine into a single
sheaf |α| over the poset P̂ = P ∪ {1} (with Alexandrov topology), where 1
is the maximal element, and all other elements are incomparable.

Clearly, � α if and only if this sheaf |α| has a global section.
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Läuchli’s models

A refined (permutation-invariant) version of Medvedev–Skvortsov models is
due (independently?) to Läuchli (1970) and is a complete model of QH.

In the propositional case, Läuchli’s models can easily be interpreted in
generalized sheaf models over P̂ ∪1̂=pt S

1, where generalized means that ⊥
is represented not by the empty sheaf, but by any sheaf that admits a sheaf
morphism into any other sheaf used in the model.

(This corresponds to the view that ⊥ is not necessarily unsolvable, but is
the hardest among all problems.)

Theorem: Generalized sheaf models are complete as models of H.
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Recovering Medvedev–Skvortsov models (rephrased)

Remark: A pair (S ,T ) amounts to a set S and a map f : S → {0, 1}.

Here T corresponds to the set of solutions of the equation f (x) = 0. Thus,
atomic finite/transfinite problems of Medvedev–Skvortsov can be
formulated explicitly:

Find a solution of the equation f (x) = 0.

This is a parametric problem, f : S → {0, 1} being the parameter. A
non-atomic problem built out of n atomic problems then depends on n
parameters, fi : Si → {0, 1}.

To solve such a parametric problem means to find a common solution of its
particular instances corresponding to all possible values of the parameters.
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The problem solving interpretation (again)

a solution of α ∧ β consists of a solution of α and a solution of β
a solution of α ∨ β consists of an explicit choice between α and β
along with a solution of the chosen problem
a solution of α→ β is a reduction of β to α; that is, a general
method of solving β on the basis of any given solution of α
⊥ has no solutions; ¬α is an abbreviation for α→ ⊥
a solution of ∀x α(x) is a general method of solving α(x0) for all
x0 ∈ D

a solution of ∃x α(x) is a solution of α(x0) for some explicitly chosen
x0 ∈ D
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Problem solving interpretation: The collapse

Let [α] denote the set of solutions of the problem α.

Then the problem solving interpretation guarantees that:
[α ∧ β] is the product of sets [α]× [β]

[α ∨ β] is the disjoint union [α] t [β]

we have Φ: [α→ β]→ [β][α] into the set of all maps
[⊥] = ∅
we have Ψ: [∀xα(x)]→

∏
d∈D [α(d)] into the product

[∃xα(x)] is the disjoint union
⊔

d∈D [α(d)]

Let us force Φ to be the identity map. (Why not?) Then

[α ∨ ¬α] = [α] t ∅[α]

is never empty; thus α ∨ ¬α has a solution for each problem α.

Sergey Melikhov (Steklov Math Institute)A logic of problems and propositions, ... Tampere, 08.14 37 / 42



Problem solving interpretation: The collapse

Let [α] denote the set of solutions of the problem α.

Then the problem solving interpretation guarantees that:
[α ∧ β] is the product of sets [α]× [β]

[α ∨ β] is the disjoint union [α] t [β]

we have Φ: [α→ β]→ [β][α] into the set of all maps
[⊥] = ∅
we have Ψ: [∀xα(x)]→

∏
d∈D [α(d)] into the product

[∃xα(x)] is the disjoint union
⊔

d∈D [α(d)]

Let us force Φ to be the identity map. (Why not?) Then

[α ∨ ¬α] = [α] t ∅[α]

is never empty; thus α ∨ ¬α has a solution for each problem α.

Sergey Melikhov (Steklov Math Institute)A logic of problems and propositions, ... Tampere, 08.14 37 / 42



Problem solving interpretation: The collapse

Let [α] denote the set of solutions of the problem α.

Then the problem solving interpretation guarantees that:
[α ∧ β] is the product of sets [α]× [β]

[α ∨ β] is the disjoint union [α] t [β]

we have Φ: [α→ β]→ [β][α] into the set of all maps
[⊥] = ∅
we have Ψ: [∀xα(x)]→

∏
d∈D [α(d)] into the product

[∃xα(x)] is the disjoint union
⊔

d∈D [α(d)]

Let us force Φ to be the identity map. (Why not?)

Then

[α ∨ ¬α] = [α] t ∅[α]

is never empty; thus α ∨ ¬α has a solution for each problem α.

Sergey Melikhov (Steklov Math Institute)A logic of problems and propositions, ... Tampere, 08.14 37 / 42



Problem solving interpretation: The collapse

Let [α] denote the set of solutions of the problem α.

Then the problem solving interpretation guarantees that:
[α ∧ β] is the product of sets [α]× [β]

[α ∨ β] is the disjoint union [α] t [β]

we have Φ: [α→ β]→ [β][α] into the set of all maps
[⊥] = ∅
we have Ψ: [∀xα(x)]→

∏
d∈D [α(d)] into the product

[∃xα(x)] is the disjoint union
⊔

d∈D [α(d)]

Let us force Φ to be the identity map. (Why not?) Then

[α ∨ ¬α] = [α] t ∅[α]

is never empty; thus α ∨ ¬α has a solution for each problem α.

Sergey Melikhov (Steklov Math Institute)A logic of problems and propositions, ... Tampere, 08.14 37 / 42



Problem solving interpretation: The collapse

Thus the problem solving interpretation in itself fails to capture the essence
of intuitionistic logic!

Troelstra and van Dalen, Constructivism in Mathematics, vol. 1 (1988):

“the BHK-interpretation in itself has no ‘explanatory power’: the possibility
of recognizing a classically valid logical schema as being constructively
unacceptable depends entirely on our interpretation of ‘construction’,
‘function’, ‘operation’.”

Our modified BHK interpretation can do the recognition without resorting
to any special (computational/epistemic) understanding of functions.
“mBHK” (m=“mathematical”).

Thus the mBHK achieves a goal claimed prematurely by Kolmogorov
(1932): “In our setup there is no need for any special, e.g. intuitionistic,
epistemic presuppositions.”
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Towards the mBHK

Our point of departure is Kolmogorov’s idea of general method:

If α(x) is a problem depending on the variable x “of any sort”, then “to
present a general method of solving α(x) for every particular value of x”
means, according to Kolmogorov, “to be able to solve α(x0) for every given
specific value of x0 of the variable x by a finite sequence of steps, known in
advance (i.e. before the choice of x0)”.

This roughly corresponds to the notion of a “construction” advocated by
Brouwer and Heyting, but is perhaps less rhetorical in that it puts emphasis
on the fully rigorous matter of the order of quantifiers.
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Towards the mBHK (cont’d)

Next, observe that in our sheaf model of QH, the stalks of sheaves over a
point a behave precisely according to the BHK:

|α ∧ β|a is the product of sets |α|a × |β|a
|α ∨ β|a is the disjoint union |α|a t |β|a
we have Φ: |α→ β|a → |β|a|α|a into the set of all maps
|⊥|a = ∅
we have Ψ: |∀xα(x)|a →

∏
d∈D |α(d)|a into the product

|∃xα(x)|a is the disjoint union
⊔

d∈D |α(d)|a

The sheaves themselves do not really behave in full accordance with the
BHK.

Then, one cannot help suspecting that the BHK is only a locally accurate
understanding of intuitionistic logic.
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Towards the mBHK (cont’d)

Kolmogorov knew this: he defined ` p, where p is a formula of the calculus
of problems (i.e., intuitionistic logic) built out of problem symbols
a, b, c , . . . , as the following problem:

“Find a general method of solving the problem p(a, b, c, . . . ) for every
particular choice of the problems a, b, c , . . . .”

The mBHK attempts to simplify and clarify this well-forgotten definition so
as to avoid the constructive quantification over all particular problems from
“all concrete areas of mathematics”.

Compare:
• a discussion of Laüchli’s models by Lipton and O’Donnell (1995)
• Martin-Löf’s formal spaces (1991) and Ranta’s possible worlds (1995)
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• a discussion of Laüchli’s models by Lipton and O’Donnell (1995)
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mBHK

The mBHK stipulates that intuitionistic logic deals with parametric
problems, where the parameter is “continuous” and purely semantic (as
opposed to the domain of discourse, which is “discrete” and fully syntactic).

To solve such a parametric problem means, of course, to find a general
method of solving its particular instances for all possibles values of the
parameter. For these, the usual BHK (or rather the problem solving
interpretation) applies.

Thus, α ∨ ¬α may well have a special solution for each particular value of
the parameter, and at the same time there might not exist any general
method of solving all these instances at once.

Examples: Medvedev–Skvortsov problems; results on algorithmic
undecidability.
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