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Inclusion and Exclusion Logics
I denote Inclusion Logic by INC and Exclusion Logic by EXC.
Inclusion-Exclusion Logic is denoted by INEX.

Let ÝÑt1 ,
ÝÑt2 be k-tuples of terms.

k-ary inclusion atoms ÝÑt1 �
ÝÑt2 have the following truth condition:

M(X
ÝÑt1 �

ÝÑt2 , iff for all s P X
there exists s 1 P X , s.t. spÝÑt1 q � s 1pÝÑt2 q.

k-ary exclusion atoms ÝÑt1 |
ÝÑt2 have the following truth condition:

M(X
ÝÑt1 |

ÝÑt2 , iff for all s, s 1 P X
it holds that spÝÑt1 q � s 1pÝÑt2 q.

I denote Inclusion Logic containing at most k-ary atoms by INC[k]. Similarly I use
EXC[k] and INEX[k] for Exclusion Logic and Inclusion-Exclusion Logic.
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Dependence and Nondependence Logics

I denote Dependence Logic by DEP and Nondependence Logic by NDEP.

k-ary dependence atoms �pt1, . . . , tkq have the following truth condition:

M(X �pt1, . . . , tkq, iff for all s, s 1 P X for which
spt1 . . . tk�1q � s 1pt1 . . . tk�1q, also sptkq � s 1ptkq.

k-ary nondependence atoms �pt1, . . . , tkq have the following truth condition:

M(X �pt1, . . . , tkq, iff for all s P X there exists an s 1 P X ,
s.t. spt1 . . . tk�1q � s 1pt1 . . . tk�1q, but sptkq � s 1ptkq.

I use DEP[k] and NDEP[k] for Dependence and Nondependence Logics
containing at most k-ary atoms.
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Some known facts about the expressive power of logics

Fact 1 (Galliani) On the level of formulas:
EXC � DEP
INC � NDEP
INEX � INDEP (Independence Logic).

Fact 2 (Galliani) On the level of sentences:
DEP[1] � FO � NDEP[1].

Fact 3 (Väänänen) On the level of sentences:
DEP � ESO (Existential Second Order Logic).

Fact 4 (Galliani and Hella) On the level of sentences:
INC � GFP� (Positive Greatest Fixed Point Logic).
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Translation between DEP and EXC

By using translations in Galliani’s proof for "DEP � EXC",
we get the following results:

k-ary dependence atoms can be expressed in EXC[k]:

M(X �pt1, . . . , tkq, iff M(X @ x px � tk _ t1 . . . tk�1x | t1 . . . tkq.

k-ary exclusion atoms can be expressed in DEP[k � 1]:

M(X
ÝÑt1 |

ÝÑt2 , iff M(X @
ÝÑy Dw1 Dw2

�
�pw1q ^ �py1, . . . , yk ,w2q

^
�
pw1 � w2 ^ÝÑy � ÝÑt1 q _ pw1 � w2 ^ÝÑy � ÝÑt2 q

�	
.

Corollary DEP[k] ¤ EXC[k] ¤ DEP[k � 1].
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Expressing EXC[k] with ESO[k] (k-ary Existential Second Order Logic)
Let ϕ be EXC[k]-sentence. We label all the instances of exclusion atoms
pÝÑt1 |

ÝÑt2 q1, . . . , p
ÝÑt1 |

ÝÑt2 qn occuring in ϕ. Now it holds:

M(ϕ, iff M(DP1 . . . DPn ϕ
1,

where ϕ1 is defined recursively:

pψq1 � ψ, if ψ is a literal
ppÝÑt1 |

ÝÑt2 qiq
1 � Pi

ÝÑt1 ^ Pi
ÝÑt2 for all i P t1, . . . , nu

pψ ^ θq1 � ψ1 ^ θ1

pψ _ θq1 � ψ1 _ θ1

pD x ψq1 � D x ψ1

p@ x ψq1 � @ x ψ1



Expressing EXC[k] with ESO[k] (k-ary Existential Second Order Logic)
Let ϕ be EXC[k]-sentence. We label all the instances of exclusion atoms
pÝÑt1 |

ÝÑt2 q1, . . . , p
ÝÑt1 |

ÝÑt2 qn occuring in ϕ. Now it holds:

M(ϕ, iff M(DP1 . . . DPn ϕ
1,

where ϕ1 is defined recursively:

pψq1 � ψ, if ψ is a literal
ppÝÑt1 |

ÝÑt2 qiq
1 � Pi

ÝÑt1 ^ Pi
ÝÑt2 for all i P t1, . . . , nu

pψ ^ θq1 � ψ1 ^ θ1

pψ _ θq1 � ψ1 _ θ1

pD x ψq1 � D x ψ1

p@ x ψq1 � @ x ψ1



Expressing EXC[k] with ESO[k] (k-ary Existential Second Order Logic)
Let ϕ be EXC[k]-sentence. We label all the instances of exclusion atoms
pÝÑt1 |

ÝÑt2 q1, . . . , p
ÝÑt1 |

ÝÑt2 qn occuring in ϕ. Now it holds:

M(ϕ, iff M(DP1 . . . DPn ϕ
1,

where ϕ1 is defined recursively:

pψq1 � ψ, if ψ is a literal
ppÝÑt1 |

ÝÑt2 qiq
1 � Pi

ÝÑt1 ^ Pi
ÝÑt2 for all i P t1, . . . , nu

pψ ^ θq1 � ψ1 ^ θ1

pψ _ θq1 � ψ1 _ θ1

pD x ψq1 � D x ψ1

p@ x ψq1 � @ x ψ1

Corollary EXC[k] ¤ ESO[k].



Expressing EXC[k] with ESO[k] (k-ary Existential Second Order Logic)
Let ϕ be EXC[k]-sentence. We label all the instances of exclusion atoms
pÝÑt1 |

ÝÑt2 q1, . . . , p
ÝÑt1 |

ÝÑt2 qn occuring in ϕ. Now it holds:

M(ϕ, iff M(DP1 . . . DPn ϕ
1,

where ϕ1 is defined recursively:

pψq1 � ψ, if ψ is a literal
ppÝÑt1 |

ÝÑt2 qiq
1 � Pi

ÝÑt1 ^ Pi
ÝÑt2 for all i P t1, . . . , nu

pψ ^ θq1 � ψ1 ^ θ1

pψ _ θq1 � ψ1 _ θ1

pD x ψq1 � D x ψ1

p@ x ψq1 � @ x ψ1

Corollary EXC[k] ¤ ESO[k].



The expressive power of unary exclusion logic
We have shown before that DEP[1] ¤ EXC[1] ¤ DEP[2].

The following properties of graphs can be defined in EXC[1]:
� Disconnectivity
� k-colorability

Corollary EXC[1] ¦ DEP[1], and thus DEP[1]   EXC[1].

Väänänen has shown that there are properties that can be expressed in DEP[2],
but cannot be expressed in ESO[1]:

� Infinity of a model
� Even cardinality of a model

Corollary On the level of sentences DEP[2] ¦ ESO[1], and thus EXC[1]   DEP[2].

So we have shown that: DEP[1]   EXC[1]   DEP[2].
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Expressing INC[k] with ESO[k]
Let ϕ be INC[k]-sentence. We label all the instances of inclusion atoms
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where ϕ1 and ϕ1i (i P t1, . . . , nu) are defined recursively:

pψq1 � ψ, if ψ is a literal
ppÝÑt1 �

ÝÑt2 qiq
1 � Pi

ÝÑt1 for all i P t1, . . . , nu
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Expressing INC[k] with ESO[k]

where ϕ1 and ϕ1i (i P t1, . . . , nu) are defined recursively:

pψq1i � ψ, if ψ is a literal
ppÝÑt1 �

ÝÑt2 qjq
1
i � Pj

ÝÑt1 , if j � i
ppÝÑt1 �

ÝÑt2 qjq
1
i � p

ÝÑu � ÝÑt2 q ^ Pj
ÝÑt1 , if j � i

pψ ^ θq1i � ψ1i ^ θ
1
i

pψ _ θq1i �

$'&
'%
ψ1i , if pt1 � t2qi is a subformula of ψ
θ1i , if pt1 � t2qi is a subformula of θ
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The expressive power of unary inclusion logic

We have shown before that NDEP[1] ¤ INC[1] ¤ NDEP[2].

Galliani and Hella have noted that the following property of graphs
can be defined in INC[1]:

� Finite directed graph contains a cycle

Corollary INC[1] ¦ NDEP[1], and thus NDEP[1]   INC[1].

By using the Ehrenfeucht-Fraïssé game for the inclusion logic (presented by
Galliani and Hella) it can be shown that there exists no INC[1]-formula ϕ
which would be equivalent with the NDEP[2]-formula �px , yq.

Corollary NDEP[2] ¦ INC[1], and thus INC[1]   NDEP[2].

So we have shown that: NDEP[1]   INC[1]   NDEP[2].
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Expressing INEX[k] with ESO[k]
Let ϕ be INEX[k]-sentence. We label all the instances of exclusion atoms
pÝÑt1 |

ÝÑt2 q1, . . . , p
ÝÑt1 |

ÝÑt2 qn occuring in ϕ, and define ϕ1:

pψq1 � ψ, if ψ is a literal
ppÝÑt1 |

ÝÑt2 qiq
1 � Pi

ÝÑt1 ^ Pi
ÝÑt2 for all i P t1, . . . , nu

pÝÑt1 �
ÝÑt2 q

1 � ÝÑt1 �
ÝÑt2

pψ ^ θq1 � ψ1 ^ θ1

pψ _ θq1 � ψ1 _ θ1

pD x ψq1 � D x ψ1

p@ x ψq1 � @ x ψ1
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Now it holds: M(ϕ, iff M(DP1 . . . DPn µ.

Corollary INEX[k] ¤ ESO[k].
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Term value preserving disjunction

Let ÝÑt1 , . . . ,
ÝÑtn be k-tuples of terms.

The following connective can be expressed in INEX[k]:

M(X ϕ_ÝÑt1 ...ÝÑtn ψ, iff there exists Y ,Y 1 � X s.t.

Y Y Y 1 � X , M(Y ϕ and M(Y 1 ψ,

and if Y ,Y 1 � H, then Y pÝÑti q � Y 1pÝÑti q � X pÝÑti q

for all i P t1, . . . , nu.



Term value preserving disjunction

Expressing term value preserving disjunction in INEX[k]:

ϕ_ÝÑt1 ...ÝÑtn ψ :� pϕ\ ψq \ D y1 D y2
�
�py1q ^ �py2q ^ y1 � y2

^ D x
� n©

i�1
pθi \ θ

1
iq ^

�
px � y1 ^ ϕq _ px � y2 ^ ψq

���
,

where for each i P t1, . . . , nu:

θi :� px � y1 ^ @ÝÑz pÝÑz � ÝÑti qq _ px � y2 ^ @ÝÑz pÝÑz � ÝÑti qq

θ1i :� DÝÑu
�ÝÑu | ÝÑti ^ DÝÑw1 DÝÑw2

��
px � y1 ^ÝÑw1 �

ÝÑti ^ÝÑw2 � ÝÑu q
_ px � y2 ^ÝÑw1 � ÝÑu ^ÝÑw2 �

ÝÑti q
�
^ÝÑti � ÝÑw1 ^

ÝÑti � ÝÑw2
��

(Connective \ is the intuitionistic disjunction which can be expressed in DEP[1])
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Expressing ESO[k] with INEX[k]
Let DP1 . . . DPn ϕ be ESO[k]-sentence that is satisfied, iff it is satisfied with
non-empty interpretations for P1, . . . ,Pn. Now it holds:

M(DP1 . . . DPn ϕ, iff DÝÑw1 . . . DÝÑwn ϕ
1,

where ϕ1 is defined recursively:

ψ1 � ψ, if ψ is literal and Pi does not occur in ψ
pPi
ÝÑt q1 � ÝÑt � ÝÑwi

p Pi
ÝÑt q1 � ÝÑt | ÝÑwi

pψ ^ θq1 � ψ1 ^ θ1

pψ _ θq1 � ψ1 _ÝÑw1...ÝÑwn θ
1

pD x ψq1 � D x ψ1

p@ x ψq1 � @ x ψ1
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Open questions and further recearch

� On the level of sentences does INC[1]   NDEP[2]?

� Does it hold for all k P Z�, that#
DEP[k]   EXC[k]   DEP[k+1]

NDEP[k]   INC[k]   NDEP[k+1]

� If the latter is true, is it true on the level of sentences?

� What kind of fragments of ESO[k] are INC[k] and EXC[k]?
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Appendix: Some operators expressible in EXC[1]

The following operators can be expressed in EXC[1]:

Universal quantification over the values of a given term:

M(X p@ x � tqϕ, iff M(X rXptq{xs ϕ.

Existential quantification over the complement
of the values of a given set of terms:

M(X pD x |
n¤

i�1
tiqϕ,

iff there exists f : X Ñ
n¤

i�1
X ptiq, s.t. M(X rf {xs ϕ.
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Appendix: Some properties of graphs expressible in EXC[1]

Undirected graph G � pV ,E q is disconnected, iff

G(@ x D y1pD y2 | y1q
�
px � y1 _ x � y2q

^ p@ z1 � y1qp@ z2 � y2q Ez1z2
�
.

Undirected graph G � pV ,E q is k-colorable, iff

G(@ x D y1pD y2 | y1q . . . pD yk | y1 Y � � � Y yk�1q

� kª
i�1

x � yi ^
k©

i�1
p@ z1 � yiqp@ z2 � yiq Ez1z2

�
.
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Appendix: A NDEP[2]-formula which is not expressiple in INC[1]

Let L � H and M be an L-model, s.t. dompMq � t0, 1u.
Let X � ts1, s2u and Y � ts1, s2, s3u, where

s1 � tpx , 0q, py , 0qu
s2 � tpx , 0q, py , 1qu
s3 � tpx , 1q, py , 1qu

Clearly now M(X �px , yq, but M*Y �px , yq.

By using the Ehrenfeucht-Fraïssé game for inclusion logic we can show
that there exists no INC[1]-formula ϕ so that

M(X ϕ, but M*Y ϕ.
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