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k-ary exclusion atoms t; | T, have the following truth condition:

MEx | T, iff for all s,s" € X
it holds that s(f;) # s'(%).

| denote Inclusion Logic containing at most k-ary atoms by INC[k]. Similarly | use
EXC[k] and INEX[k] for Exclusion Logic and Inclusion-Exclusion Logic.
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| denote Dependence Logic by DEP and Nondependence Logic by NDEP.

k-ary dependence atoms =(t, ..., tx) have the following truth condition:

MEx =(t1,..., tx), iff for all 5,5’ € X for which
S(tl ... tkfl) = Sl(tl . tkfl), also S(tk) = Sl(tk).

k-ary nondependence atoms #(ti, ..., tx) have the following truth condition:

Mx #(t1,..., tg), iff for all s € X there exists an s' € X,
s.t. S(tl . fkfl) = Sl(tl - tkfl), but S(tk) #* Sl(i‘k).

| use DEP[k]| and NDEP[k] for Dependence and Nondependence Logics
containing at most k-ary atoms.
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Fact 2 (Galliani) On the level of sentences:
DEP[1] = FO = NDEP[1].

Fact 3 (Vaananen) On the level of sentences:
DEP = ESO (Existential Second Order Logic).

Fact 4 (Galliani and Hella) On the level of sentences:
INC = GFP™ (Positive Greatest Fixed Point Logic).
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By using translations in Galliani's proof for "DEP = EXC",
we get the following results:

k-ary dependence atoms can be expressed in EXC[k]:

MEx =(t1,..., tx), ifft MEXVx(x=1t v t1...t_1x | t1... ty).

k-ary exclusion atoms can be expressed in DEP[k + 1]:
Mex T | T, iff MExYY IwiIws (:(Wl) A=(Y15-ns Yk, W2)
/\((Wl=W2A7¢?1))V(W175W2/\775?2)))).

Corollary DEP[K] < EXC[k] < DEP[k + 1].
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Expressing term value preserving disjunction in INEX[k]:
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(Connective i is the intuitionistic disjunction which can be expressed in DEP[1])
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Expressing ESO[k] with INEX[]
Let 3Py ...3 P, be ESO[k]|-sentence that is satisfied, iff it is satisfied with
non-empty interpretations for Py, ..., P,. Now it holds:

MEIPy.. 3Py, iff 3.3, ¢,
where ¢’ is defined recursively:
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Corollary ESO[k]| < INEX[k], and thus INEX[k] = ESO[k].
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Open questions and further recearch

v

On the level of sentences does INC[1] < NDEP[2]?

» Does it hold for all k € Z, that

DEP[K] < EXC[k] < DEP[k-+1]
NDEP[k] < INC[k] < NDEP[k+1]

» If the latter is true, is it true on the level of sentences?

v

What kind of fragments of ESO[k] are INC[k] and EXC[k]?
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Appendix: Some operators expressible in EXCJ[1]
The following operators can be expressed in EXC[1]:

Universal quantification over the values of a given term:
MEx(Vx ct)p, iff M FEX[X(t)/x] $-

Existential quantification over the complement
of the values of a given set of terms:

Mex@x| ) e,

i=1

iff there exists f : X — U X(ti), st. MEx(f/x »-
i=1



Appendix: Some properties of graphs expressible in EXC[1]

Undirected graph G = (V, E) is disconnected, iff

GEVX3InEy [y)((x=y1vx =)
ANz Sy)Vz S yp)—Enz).



Appendix: Some properties of graphs expressible in EXC[1]

Undirected graph G = (V, E) is disconnected, iff
GEVX3InEy [y)((x=y1vx =)
ANz Sy)Vz S yp)—Enz).
Undirected graph G = (V, E) is k-colorable, iff
GEYxIyi@y2 |y1) - @y lyr o Uyka)

K K
(\/x =y A /\(Vzl Sy)(Vz Cy))—Eznz).
i—1 i—1



Appendix: A NDEP[2]-formula which is not expressiple in INC[1]

Let L = ¢ and M be an L-model, s.t. dom(M) = {0, 1}.
Let X = {s1,s} and Y = {s1, 52, 53}, where

S1 = {(X>0)a()/70)}
S = {(Xao)a(Ya 1)}
53 = {(X>1)a(Ya 1)}
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Appendix: A NDEP[2]-formula which is not expressiple in INC[1]

Let L = ¢ and M be an L-model, s.t. dom(M) = {0, 1}.
Let X = {s1,s} and Y = {s1, 52, 53}, where

S1 = {(X>O)’(Y7O)}
S = {(X,O),(y, 1)}

3= {(le)’ (Yv )}

Clearly now M =x #(x,y), but My #(x,y).

[y

By using the Ehrenfeucht-Fraissé game for inclusion logic we can show
that there exists no INC[1]-formula ¢ so that

MEx @, but My p.



