
A

UN
V

E
R

IT
S

I

S

P
R

E
E

S

M
I

AT

S
N

ON THE INCLUSION PROBLEM FOR

VERY SIMPLE DETERMINISTIC

PUSHDOWN AUTOMATA

ERKKI M�AKINEN

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF TAMPERE

REPORT A-1999-8



UNIVERSITY OF TAMPERE

DEPARTMENT OF COMPUTER SCIENCE

SERIES OF PUBLICATIONS A

A-1999-8, JUNE 1999

ON THE INCLUSION PROBLEM FOR

VERY SIMPLE DETERMINISTIC

PUSHDOWN AUTOMATA

ERKKI M�AKINEN

University of Tampere

Department of Computer Science

P.O.Box 607

FIN-33101 Tampere, Finland

ISBN 951-44-4611-9

ISSN 0783-6910



On the inclusion problem for very simple deterministic

pushdown automata

Erkki M�akinen
1

Department of Computer Science, University of Tampere, P.O. Box 607,

FIN-33101 Tampere, Finland

Abstract

We present a new algorithm for checking the inclusion of very simple determin-
istic pushdown automata. The inclusion \L(M1) � L(M2)?" is checked by �rst
constructing a �nite characteristic set R of M1, and then checking whether or not
the inclusion R � L(M2) holds.

Keywords: decidability problems, deterministic pushdown automaton, left Szilard
language, characteristic set

1 Introduction

The inclusion problem for simple deterministic pushdown automata is known
to be decidable [2]. Wakatsuki and Tomita [6] have later studied the inclusion
problem for very simple deterministic pushdown automata. They have shown
that there exists a direct branching algorithm for solving this problem.

In this paper we show that there exists even a simpler algorithm for solv-
ing the inclusion problem for very simple deterministic pushdown automata.
When solving the problem \L(M1) � L(M2)?" the algorithm �rst constructs
a characteristic set of M1. Characteristic sets of languages are used in gram-
matical inference algorithms [1]. Yokomori [7] has de�ned characteristic sets
for very simple context-free grammars, i.e., for the grammars generating the
class of languages accepted by very simple deterministic pushdown automata.
Given a language L(M1), its characteristic set R has the property that L(M1)
is the smallest language in the language class in question containing R. Hence,
if also L(M2) contains R, then the smallest language L(M1) containing R must
be included in L(M2). Otherwise (L(M2) does not contain R), it is clear that

1E-mail: em@cs.uta.�. Work supported by the Academy of Finland (Project
35025).



L(M1) � L(M2) cannot hold. Thus, the characteristic set R is used as a kind
of \test set": it is su�cient to check whether L(M2) contains the elements of
the characteristic set.

The Wakatsuki-Tomita algorithm [6] is polynomial on the maximal thickness
of the stack symbols. The thickness of a stack symbol is the length of the
shortest derivation that makes the symbol go to empty. Thickness can be
exponential on the description length of an automaton [6].

We give our algorithm using grammar notation, and it turns out that similar
\thickness" concepts are needed here as well. Hence, the time complexity of
our algorithm contains an exponential factor as is also the case in the earlier
algorithm by Wakatsuki and Tomita. However, our algorithm is conceptually
much simpler and its time complexity depends only on one of the two input
automata (or grammars).

Yokomori [8, Cor. 20] has earlier mentioned the possibility to use characteristic
sets in solving inclusion problems.

2 Preliminaries

We mainly follow the de�nitions and notations given in [3]. The empty string
is denoted by �, the length of a string w by lg(w), and the cardinality of a set
S by j S j.

Consider a stateless deterministic pushdown automaton M = (�;�; �; Z0)
where �, �, and � are the �nite sets of stack symbols, input symbols, and
transition rules, respectively, and Z0 is the initial stack symbol. We write
A!a �, if reading an input symbol a with A on the top of the stack causes an
action which replaces A with � on the stack. We say that M is a very simple
deterministic pushdown automaton (vspda, for short) if for each a in � there
is exactly one transition rule A!a �, for some A in � and � in ��.

A con�guration is � 2 ��, where the leftmost symbol of � is the top of the
stack. Z0 is the initial con�guration. A vspda makes amove from con�guration
A! to con�guration �!, denoted by A! !a �!, if there is a transition rule
A!a �. A derivation �1 )a1 �2 )

a2 : : :)am �m is a sequence of moves from
con�guration �1 to con�guration �m reading the input string a1 : : : am. The
language accepted by M = (�;�; �; Z0) is L(M) = fw 2 �� j Z0 )

w �g.

We denote context-free grammars as G = (N;�; P; S), where N , �, and P ,
are the sets of nonterminals, terminals, and productions, respectively, and
S is the start symbol. A very simple context-free grammar (vscfg, for short)

2



G = (N;�; P; S) has productions of the form A! a� where � is in N�, and
the terminal symbols appearing in the right hand sides are unique. A language
L is a very simple language if there exists a vscfg generating L. Very simple
languages are often called left Szilard languages [4].

There is an obvious bijective correspondence between vspda's and vscfg's [6,7],
and between languages accepted by vspda's and left Szilard languages [4].

Given a vspda M = (�;�; �; Z0), we can construct the corresponding vscfg
G = (N;�; P; S) by setting N = �, S = Z0, and taking, for each transition rule
A!a �, a production A! a� to P . A similar straightforward construction is
naturally possible to the opposite direction as well. Hence, in what follows we
use grammar and automaton notations related to vspda's and vscfg's mixed
without any danger of confusion.

We consider reduced grammars only, i.e., each terminal and nonterminal ap-
pears at least in one derivation from the start symbol to a terminal string.
The corresponding assumption naturally holds for vspda's.

We need a grammar concept corresponding to the thickness of a stack symbol.
The thickness of a nonterminal A in a vscfg G = (N;�; P; S) is the smallest k
such that there exists a derivation of the form A) �1 ) : : :) �k = w;w 2
�+. The thickness of G, denoted by k(G), is the maximum thickness over G's
nonterminals. Moreover, we de�ne the upper thickness of a nonterminal A to
be the greatest K such that there exists a non-recursive derivation of the form
A ) �1 ) : : : ) �K = w;w 2 �+. The upper thickness of G, denoted by
K(G), is de�ned to be the upper thickness of the start symbol S.

For a vscfg G = (N;�; P; S), we denote the number of nonterminals by n,
n =j N j. A production with a nonterminal A in the left hand side is said to
be an A-production. By m we denote the maximum number of A-productions
over the nonterminals in G. As noted in [6], k(G) can be exponential on n and
m. The same naturally holds for K(G).

3 Characteristic sets

A characteristic set of a vscfg G is a set R of words such that L(G) is the
smallest very simple language containing R. Yokomori [7] has presented an
algorithm to infer G in the limit from R in polynomial time. R can be found
with the help of the characteristic graph of G. The characteristic graph of a
vscfg is a digraph whose vertices are labelled with certain nonterminal strings
of G and whose edges are labelled with the terminals of G.

3



In order to construct characteristic graphs, we need the concept of shortest-
cut production [7]. A shortest-cut production of a nonterminal A in G is the
production which starts the shortest derivation from A to a terminal string.
A nonterminal may have several shortest-cut productions.

Given a vscfg G = (N;�; P; S) its characteristic graph C(G) is de�ned as
follows [7]:

{ A For each production S ! a� in P take the edge ([S]; [�]) labelled with
a to the digraph. If � = � then take the edge ([S]; F ) where F is a speci�c
�nal vertex.

{ B In steps i = 2; 3; : : : until the algorithm is not applicable to any vertex
do the following:
� B1 Let [A!], A 2 N , ! 2 N�, be a vertex inserted in step i� 1. If A does
not appear as the leftmost nonterminal in any of the vertices created in
the previous steps then, for each production A! b� in P , take the edge
([A!]; [�!]) labelled with b to the digraph.

� B2 Otherwise (there is an earlier inserted vertex with A as the leftmost
nonterminal) take, for one of the shortest-cut productions A ! b� of
A, the edge ([A!]; [�!]) labelled with b to the digraph. In both cases, if
�! = �, take the edge ([A]; F ) labelled with b to the digarph.

(\Taking an edge ([�]; [�]) to the digraph" means that either there already
exist vertices [�] and [�] in the digraph or that we now insert them.)

The characteristic set R is now obtained by concatenating the labels appearing
in the paths from [S] to the �nal vertex F as described in Algorithm 1.

Algorithm 1 (Characteristic set)
Input: A characteristic graph C(G).
Output: The corresponding characteristic set R(C(G)).
begin

1. Take to R(C(G)) the words related to paths from [S] to F with no
directed cycles.

2. For each directed cycle with the subword w related to it, �nd the
shortest word v1 from [S] to a vertex [�] in the cycle. Moreover, let
v2 be the shortest from [�] F . Then take v1wv2 to R(C(G)).

end fAlgorithmg

The characteristic set obtained is unique up to the choice of shortest-cut pro-
ductions. As noted in [5], the cardinality of the output set of Algorithm 1 could
be decreased by including more than one directed cycle in a single word. How-
ever, this would make the algorithm more complicated without having any
real e�ect to the time complexity.

4



Proposition 1 [7] Very simple languages have characteristic sets, and they
can be e�ectively constructed by Algorithm 1.

Knowing the size of the resulting characteristic set is essential for our pur-
poses. We have the following rough upper bounds for the time complexity
of Algorithm 1 and for the cardinality of characteristic sets obtained. Recall
that we denote the thickness of G by k(G), the upper thickness by K(G), the
number of nonterminals by n, and the maximum number of A-productions in
G by m. (Notice that nm is about the same size as K(G).)

Theorem 2 Algorithm 1 runs in time O(k(G)mn). The cardinality of R(C(G))
is O(nm + k(G)mn).

Proof. For each nonterminal A in G, C(G) has, because of Step B1 above, at
most m+1 vertices labelled with a string with A as the leftmost nonterminal.
Moreover, there can be vertices labelled with a string having A as the leftmost
nonterminal in the non-recursive derivations containing shortest-cut produc-
tions (Step B2 above). The total length of such non-recursive derivations is
O(k(G)mn). Hence, C(G) has O(k(G)mn) vertices.

When a nonterminal appears �rst time as the leftmost symbol in a label of a
vertex, we take at most m new edges to C(G). The shortest-cut derivations
have at least one additional edge per vertex. Hence, there are O(k(G)mn)
edges in C(G).

The time complexity is dominated by the construction of the digraph which
takes time O(k(G)mn).

When applying Step 1 of Algorithm 1, we can visit at most n vertices added in
Step B1. Each such vertex allows at most m branching possibilities. In other
vertices there is only one possibility to continue. Hence, Step 1 of Algorithm
1 adds at most O(nm) words to R(C(G)). Since there certainly are at most as
many directed cycles in C(G) as there are edges, Step 2 of Algorithm 1 adds
at most O(k(G)mn) words to R(C(G)). Hence, the cardinality of R(C(G)) is
O(nm + k(G)mn).

Theorem 3 The total length of the words in R(C(G)) is O((nm+k(G)mn)K(G)).

Proof. If a word in R(C(G)) does not contain a directed cycle, its length is
at most K(G). Each directed cycle in C(G) has length at most K(G). The
length of words containing a directed cycle is at most 2K(G). By Theorem 2
the total length is O((nm + k(G)mn)K(G)).

5



4 The algorithm

In the previous chapter we de�ned characteristic sets for vscfg's. Because of
the one-to-one correspondence between vspda's and vscfg's, we could also
talk about \the characteristic set of a vspda". We give our algorithm using
grammar formalism for notational convenience.

Algorithm 2 (Inclusion)
Input: Very simple context-free grammars G1 and G2.
Output: \Yes", if L(G1) � L(G2), otherwise \No".
begin

construct R(C(G1)) by Algorithm 1;
if R(C(G1)) � L(G2)
then output(\Yes")
else output(\No");

end fAlgorithmg

By the de�nition of characteristic sets and by Proposition 1 we have the fol-
lowing theorem.

Theorem 4 Algorithm 2 correctly solves the inclusion problem for very simple
context-free languages.

Further, by the results of the previous chapter, we have

Theorem 5 Algorithm 2 runs in time O((nm + k(G1)mn)K(G1)).

Proof. The inclusion R(C(G1)) � L(G2) is easily checked by simulating
derivations according to G2. Hence, the time complexity of Algorithm 2 de-
pends on the total length of the words in the characteristic set R(C(G1)). The
result now follows by Theorem 3.

By the one-to-one correspondence between vscfg's and vspda's, Theorems 4
and 5 imply the existence of an e�cient algorithm for the inclusion problem for
vspda's. Wakatsuki and Tomita [6] proved that their algorithm runs in poly-
nomial time on the thickness of the stack symbols. Their exact time bound
is given by a complex formula including f.ex. the factors (pnt)5 and k(G2)2,
where, expressed in grammar notation, and p is the number of nonterminals
in the longest right hand side of G1's productions, n is the number of nonter-
minals in G1, t is the number of terminals in G1, and k(G2) is the thickness
of G2.

6



The main di�erence in the time bounds is that the time bound of our algo-
rithm depends on G1 only, while the time complexity of the Wakatsuki-Tomita
algorithm depends also on G2.

5 Discussion

The use of characteristic sets is one way of avoiding over-generalization in
language inference algorithm using positive data only [1]. As shown above,
characteristic sets allows also e�cient inclusion algorithms for the language
classes in question. In the literature, characteristic sets are de�ned e.g. for
k-reversible languages [1] and strictly deterministic languages [9]. E�cient in-
clusion algorithms for these subclasses of regular languages can be constructed
following the above method.

Acknowledgement

The author wishes to thank Takashi Yokomori for valuable comments.

7



References

[1] Angluin, D., Inference of reversible languages. J. ACM 29 (1982), 741{765.

[2] Friedman, E.P., The inclusion problem for simple languages. Theoret. Comput.
Sci. 1 (1976), 297{316.

[3] Harrison, M.A., Introduction to Formal Language Theory (Addison-Wesley,
1978).

[4] M�akinen, E., On context-free derivations. Acta Universitatis Tamperensis 198,
1985.

[5] M�akinen, E., On grammatical inference and derivational complexity of context-
free grammars. Fundam. Inform. 17 (1992), 363{368.

[6] Wakatsuki, M., and Tomita, E., A fast algorithm for checking the inclusion for
very simple deterministic pushdown automata. IEICE Trans. on Information

and Systems E76-E 10 (1993), 1224{1233.

[7] Yokomori, T., Polynomial-time learning of very simple grammars from positive
data. Proc. 4th Workshop on Computational Learning Theory, pp. 213{227, 1991.

[8] Yokomori, T., Polynomial-time learning of very simple grammars from positive
data. Report CSIM 90-15. University of Electro-Communications, Dept. of
Computer Science and Information Mathematics, December 1990, Revised
September 1993.

[9] Yokomori, T., On polynomial-time learnability in the limit of strictly
deterministic automata. Machine Learning 19 (1995), 153{179.

8


