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1. The Kantorovich Inequality and Five Related
Inequalities: 1914-1959
We consider the well-known Kantorovich [nequality (1943):

AL A -1 (i, = A
(trt)? - 4N\

where ¢ is a real n X 1 vector and - is a real n x n symmetric pusitive definite matrix.
with \; and \,. respectively. its (fixed) largest and smallest. necessarily pusitive. eigen-
values. \We also consider five related inequalities due respectively to Schweitzer (1914).
Pdlva-Szegs (1923). Krasnosel skii-Krein (1952). Cassels (1953). and Greub-Rheinboldt
(1939). and show that rhese six inequalities are equivalent.

Githan ALPARGU and George P. H. STYAN, McGill University, Montréal
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2. Making statistical quirks and anti—quirks

A sratistical quirk is defined to occur in the multiple regression analysis of a variable to
be explained when rthe coefficient of determination for the full multiple regression model
exceeds the sum of the coefficients of determination vbtained on all the separate bivariate
regressions of the variable to be explained on each explanatory variable. Anti- quirks can
be defined as the contrary case

Quirks and anti-quirks exhibit different difficulties of interpretation. Initial data anal-
vses and descriptive statistics provide first impressions which are contrary to the analysis
obtained on fitting the full model. High dimensional multiple correlations are. however.
common features.

Matrix methods are used to constrict design matrices and explained variables with
quirk and with anti-quirk properties. Methods used include spectral decompuosition. sin-
gular value decomposition. Gram-Schmidt orthonormalisation and generalised inverses.

Impressions provided by initial data analyses which are contrary to the conclusions
reached on by fitting the full model are illustrated graphically where possible. Such ex-
amples dramatically illustrate how first impressions concerning data and simplistic data
analysis can lead to incorrect conclusions.

Philip V Bertrand.
School of Mathematics and Statistics,
The University of Birmingham, Birmingham B15 2TT. UK

3. Statistical inference for random planes

A random p-plane F in n-space is characterized uniquely by the nxn perpen dicular
projection matrix X'X . where X is any p-frame (i.e. XX =1I) spanning F. Let T denote
the sum of a sample of N such projection matrices. Let D be diagonal with diagonal
elements the eigenvalues of T in decreasin g order. and M,, orthogonal with columns the
corresponding eigenvectors. Then we write, in accord with the principal axis theorem:

T = ZXkX; = M,,DM,, (principal form)
k
wherek = 1,..,.N
Partition M,, into p- and g—frames: M,, = (Mmp,M,,,). where n = p+ q. Span(l/,,p) is

taken to be the sample mean p-plane since M, corresponds to the large st p eigenvalues

of D.

The partition of My, induces a partitioning of A, X into the pxp matrix M; X
over the qxp matrix M;, X. The closer span(X) to span(M,), the closer M[, X to an



orthogonal matrix and the cluser M, X to the null matrix. We seek ro measure the
deviation of span(X) from span(Mmp) by a qxp “error matrix” that is the same for all
p-frames X with the same span. sinc e unly span(X) is relevant for this. N[, X will not
do because it depends un more than span(X): permuting the colnmns of X. for example.
duesn’t change the span but results in different entries for M,,,X. More appropriate is
the qxp cstimated error matrir E,, for Xi. which depends only o n span{Xy) (Downs.
in press). and is given by

En = M, XiR (3.1)

my
where R = [(M',,,pxk)' (M',,,,,xk)]_% (I\I:,,,,Xk)l is a pxp and orthogonal.

Error matrices can be used to test hypotheses about the mean p—plane fur the Bingham
distribution of random p-planes in n—space. The Bingham distribution has rhe forms:

f(XiX)) = c(\) etr (XiX.G) = c(A)exp |i—l) S (’k.,eu,‘)}

25
where ¢(\) is 2 norming constant. the symmetric parameter matrix G = MAM' ( prin-
cipal form). the first p elements on the diagonal A of sum to zero. the k;; are functions
6f A . and the e;j; are elements of the error matriz Ej obtained from (2) by replacing
M= (M, Mmq) therein with M = (M_,M,). When thek;; are large the e;;; are approx-
imately independent and normall y distributed with null means and with variances the
reciprocals of the 2k;; (Downs. in press). To construct a test of the null hypothesis that
span(N I, )=span(Mqy). first estimate M under the null hypothesis by M,. par titioned as
Mo=(Mg,Ro, MggRao,). where

Rop = [(MiyMop) (MumpMop)] ™3 (MpnpMop)',
R()q [(‘v ‘loq A‘(!’ “ng ]--(‘[I "[Oq)

and My, is any q—frame orthogonal to Mg,. Then get the null error matrices Eox
(k=1.....n) from (2) by using Mg for M,,. Form N pqx1 supervectors eq from the N Eg,
and get their sample mean vector and dispersion matrix. Then test the null hypothesis
that span(N,)=span(Mg,) by a standard Hotelling-type F-test of the hypothesis that
E(e()k)=0.

Tom Downs.

The University of Texas Health Science Center,
School of Public Health.

P.O. Boz 20186.

Houston. Teras

4. A class of statistical estimators related to principal
components

In rhis paper we investigate the algebraic relationships between some of the more familiar
estimation and testing procedures employed in multivariate econometrics and the princi-
pal compunents and cuntininm regression techniques of multivariate statistics.



Dr R.W. Farebrother. Department of Economic Studies. Victoria {miversily of Manch-
ester. Manchester M13 9PL. United Ringdom,
R W Farebrotheraman.ac. uk

5. Some properties of shrinkage parameters of operational ridge
regression estimators

It is a known fact that the Ordinary Least Squares estimator does not provide satisfac-
tory estimates when the regressiun equation is affected by multicollinearity. In this case
it mayv be preferrable to use Ridge Regression (RR) which has been usefully applied in
diverse areas such as chemistry. criminulogy and econumics. However these estimators
depend upon sume shrinkage paramerers whose oprimal values are unknown. Obviously
the properties of the RR estimators will depend npun huw well the shrinkage parameters
have been estimated. For this reason several devices have been propused to estimate
these parameters. and their behaviour should help to explain the behaviour of the differ-
ent operational RR estimators. It is the purpose of this paper to derive the distribution
and moments of order one and two of some commonly used estimators of the shrinkage
parameters. These estimators are in fact ratios of quadratic forms of non-central normal
random variables. Given the complexity of the results. some numerical calculations will
be presented. The expected contribution of this work is to be able to determine conditions
under which an operational RR estimator would be preferable to the others.

Dr L Firinguetti. Departamento de Matematica. y C.C. Universidad de Santiago de
Chile Casilla 307 - Correo 2 Santiago Chile,
LFIRINGU@QUSACHVMI.CL

6. Second order methods for computing linear minimax
estimators '

In a linear statistical model with restricted parameter set. alternatives to the Least
Squares Estimator are of interest. Gne alternative is the linear minimax cstimator. min-
imizing among the linear estimators the maximum mean squared error (the maximum
being taken over the parameter set).

e address to a situation which has been studied fairly extensively. namely the case
that the parameter comes from an ellipsoid. the covariance model matrix is known and
positive definite. and the mean value model matrix has full column rank. Then the linear
minimax estimator is obtainable from solutions M* to the ‘dual’ problem

minimize ®(M) := trace[C (D + M)™"'] over M € .M ,Y (6.1)

where C and D are certain positive semidefinite and positive definite (k x k)-matrices.
resp.. and M is the set of positive definite (k X k)-matrices A with trace(M) = 1.
Moreover. it is known that if M, is a sequence of feasible matrices for (1) converging to
the optimum. then the corresponding sequence of linear estimators tends to the minimax
estimator.

For solving (1) numerically, we propose a Newton type method. described in Gaffke
& Heiligers (1996) (Optimization 36. pp. 41-37): The gradient (G, and the Hessian 1,



(viewed as self-adjuint linear vperator from Sym(k) to Sym(k)) of ® ar each point M,
of the iteratiun are available. and thus a search direction for the next Newton step can
be ubtained Ly solving the quadratic subproblem

minimize frace{G, (M = M,) + é(.\/ — MM = M) over M e M. (6.2)

Instead of sulving (2). we replace the feasibility set .M by
M, = cone({r, Ly, ... L e kU

where ry..... £, and y,,. ...y, are orthonormal systems of eigenvectors of G, and 1,.
resp.. corresponding to the nonzero eigenvalues. For this mudified problem the Higgins
& Polak method finds in an acceptable time a solution accurate enough to lead to a good
Newton step in the overall algorithm.

Combining the obrained search directions with suirable steplengths. theoretic conver-
gence of the resulting sequence ./, to the optimum can be proven. Moreover. in numeros.
randomly generated examples the procedure also worked well. as for problem sizes up to
k = 30 in the very most cases not more than 100 iterations were required to obtain linear

estimators with guaranteed ‘minimax’ efficiency 1 —107°.

Robert Gaffke and Berthold Heiligers
Berthold. Heiligers@Mathematik. Uni-Magdeburg. De

7. Approximating a matrix of nominal values

The rank r least squares approximation X, to a matrix X of real numbers is a funda-
mental result of matrix approximation with a well-known solution expressed in terms of
the simgular value decomposition of X (Eckart and Young, 1936). When X is a matrix
of nominal (categorical. qualitative) values it is usual to replace the category names by
numerical scores (uanitification) estimated by optimising a ratio of two sums of squares
leading to two-sided eigenvalue probl ms as in Multiple Correspondence Analysis and
similar methods. Unfortunately, this gives a numerical X, wheras it may be more ap-
propriate to approximate X by another nominal matrix . The paper will show how the
rank of a nominal matrix (ominal rank) may be defined in terms of an r-dimensional
geometrical representation of a nominal matrix in a similar manner to how a rank r real
martrix may be regarded as a set of points in R". The definition may also be adapted to
cate for ordered categorical variables (rdinal rank) . Then the best approximation may
be defined as the nominal matrix X, which best matches X in terms of the number of
agreements in their corresponding nominal values. It will be shown that this may be
expressed as a constrained least squares approximation to an indicator matrix. Algo-
rithms for maximising the number of agreements would lead to interesting new forms of
multidimensional scaling but remain to be developed. Even without an ptimal algorithm
. the new definition of nominal rank permits a nominal X, to be derived from quantified
X, and hence the relative performances of existing (sub-optimal) quantification methods
may be assessed. Examples will illustrate these ideas.

Dr J.C.Gower. Faculty of Mathematics, Open University Millon Keynes MK, United
Kingdom. J.C.Gowerdopen.ac.uk



8. Iterative majorization for minimizing complicated
functions

Several standard methods exist for minimizing a (multivariable) function. Here we fo-
cus on the relatively unknown method of iterative majorization (Ortega & Rheinboldt.
1970: De Leeuw. 1977. 1938. 1993: Heiser. 1995). This method has been successfully
applied ro minimize several luss functivns. One of the kev features of iterative majoriza-
tivn is that the sequence of function values decreases monotonically. For functions that
are bounded Lelow or sufficiently constrained. this property implies that nusnally a local
minimum is found. Two particularly useful forms of majorization are distinguished: lin-
ear and quadratic majorization (De Leeuw. 1993: Groenen & Heiser. in press). Several
majorization inequalities from the literature are discussed and categorized according this
classification.

Majorization is illustrated in two applications. First. we discuss rhe runneling method
for global optimization (Montalvo. 1979: Groenen & Heiser. in press). This technique
searches for increasingly better local minima. It consists of a local phase in which a local
minimum is obtained. and a tunneling phase in which we search for a different configu-
ration with the same loss function value. The second application comes from the area of
distance-based multivariate analysis (Meulman, 1986. 1992), which has a strong relation
with multidimensional scaling. Here. majorization is used to update the configuration
and to find optimal nonlinear transformations of the variables.

Patrick J. F. Groenen, Department of Data Theory, PO Boz 9555. 2300 RB Leiden,
The Netherlands, groenen@ruls30.fsw.leidenuniv.nl. Supported by The Netherlands Or-
ganization for Scienlific Research (NWQ) by grant nr. 575-67-053 for the ‘PIONEER’
project ‘Subject Oriented Multivariate Analysis’.

9. Solving a constrained nonnegative least squares problem within
an iterative majorization scheme

Menctone spline transformaticns are an appealing alternative to general monotone trans-
formations in nonlinear multivariate analysis (MVA) and distance-based MVA (Meulman,
1992). In this context. fitting monotone spline-transformations amounts to repeatedly
solving a least-squares problem (LS). subjected to both nonnegativity constraints on the
parameters and a length constraint on the transformed variable. Since the overall min-
imization problem in distance-based MVA constitutes a major compntational task. it is
necessary to find the optimal transformations as efficiently as possible. It will be shown
that within the larger iterative scheme for distance-based MVA. the constrained LS prob-
lem basically can be resolved using two approaches. First, by using an analytic procedure
to solve the LS problem subject to the nonnegativity constraints (Lawson & Hanson, 1992)
and afterwards applying the length constraint. Second. by using an iterative alternating
least squares approach that satisfies both types of constraints in each iteration. Using
the results of a Monte-Carlo study. the efficiency of both approaches will be compared
in terms of the quality of the found minimum and the convergence speed of the overall
algorithm.

~1



P.JLF. Groenen. B.J. van Os'and J.J. Meulman

Department of Data Theory, Leiden Universuy. P.O. Bor 95355, 2300 RB Leiden. The
Netherlunds. e-mail: groenen drulsi0). fsw.letdenunie.ni.
Meulman. J.J. (1992). The integration of multidimensivnal scaling and multivariate anal-
vsis with uprimal transformations. Psychometrika. 57.539-565.
Lawson. L. and Hanson. R.J. (1974). Solving lcast squares problems. Englewood Cliffs.
NJ: Prentice-Hall.

10. Issues involved in star orderings and their statistical
applications

The star ordering introduced by Drazin (1978) is a very restrictive ordering. We ana-
lyvze matrix partial orderings which are less restrictive. Examples of such orderings are
the left star partial ordering. the right star partial ordering (introduced by Baksalary
and Mitra. LAA. 149.1991). and o-minus partial ordering (introduced by Baksalary and
Hauke. LAA. 96. 1987). These orderings imply the minus partial ordering. There exist
other two orderings extending the star partial ordering which do not imply the minus
partial ordering. The first was introduced by Baksalary and Hauke. LAA. 127. (1990)
and it coincides with the minus partial ordering of the Moore-Penrose inverses of ordered
matrices. To define the second one let us observe that matrices ordered with respect
to the star ordering belong to a family S of simultaneously singular-value decomposable
matrices from the set of complex rectangular matrices. i.e. A,B € S if matrices AB*
and A"B are positive semi-definite. In the family we can define the following ordering

A <ZBif A,B €S and AB* — AA” is positive semi-definite.

Above orderings are used in some statistcal problems connected with estimation in
the Gauss-markov model and with distributional properties of quadratic forms.

Dr Jjan Hauke Adam Mickiewicz, Universiiy Universily
Institute of Socio-Economic Geography and Spatial Planning
Fredry 10
61-701 Poznar, Poland
Tel: (+48-61) 526383
Faz: (+48-61) 524336
e-mail: jhaukeGhum.amu.edu.pl

11. Linear Sufficiency and Admissibility in Restricted
Linear Models

The linearly sufficient and admissible estimators of parameters vector in linear regression
models are found in Markiewicz (1996) to be precisely the general rigde estimators.

'Department  of Data Theory. PO Box 9533. 2300 RB Leiden. The Netherlands.
0s5Grnls30.fsw.leidenuniv.nl.  Supported by The Netherlands Organization for Scientific Research
(NWO) by grant nr. 573-67-0533 for the ‘PIONEER’ project “Subject Oriented Multivariate Analysis’.



Linear sufficiency and admissibility is a desirable property especially in restricted
linear models in which unbiased estimaturs are inadmissible. In such models the linearly
sufficient and admissible estimators are identified as a special subclass of the class of
general ridge estimators.

This characterization is based un a decompusition result for the admissible estimators
associated with the subclass of estimarors with bounded mean squared error. Following
Gatfke and Heiligers (1989). and Heiligers (1993) we describe them as sums of the only
admissible estimator of sume nnrestricted subparameter with bounded mean squared er-
ror. and of admissible estimators of certain completely restricted subparameter.

Gaffke. N. and B. Heiligers (1989). Baves-. admissible. and minimax linear estimators
in linear models with restricted parameter space. Statistics 20. 487-303.

Heiligers. B. (1993). Linear Baves and minimax estimation in linear models with
partially restricted parameter space. J. Statist. Plann. Inference 36. 175-134.

Markiewicz. A. (1996). Characterization of general ridge extimarors. Statistics and
Probability Letters 27. 1453-148.

Berthold Heiligers. Fakultdt
fiir Mathematik Institut fir Mathematische Stochastik. Universitat Magdeburg Postfach
4120 D-39106 Magdeburg, Germany,
e-mail: heiliger@imst.math.uni-magdeburg.de
Augustyn Markiewicz* Department of Mathematical and Statistical Methods. Agricultural
University of Poznari Wojska Polskiego 28 PL-60637 Poznari. Poland e-mmail: amark@owl.au.poz:

12. Narrower Bounds for Characteristic Roots of Hadamard
Product

J. Schur (1911) established the upper and lower bounds for characteristic roots of Hadamard
product. which are discussed by G. Styan (1973) and R. Horn (1990) in their respective
survey articles on Hadamard product. However, the bounds as established by Schur are
global bounds for all characteristic roots. hence may be of a limited use.

In this paper, we establish a theorem which defines the bounds narrower and specific
to each characteristic root: Define a Hadamard product as H : A< B where A and B are
positive semi-definite matrices of order n. Then. A;(:) and \;(+) denoting, respectively.
characteristic roots and diagonal elements of the argument matrix both in descending
order. A\, (A)a; (B) < A\;(H) < Aj(A) oy (B)with A and B interchangeable.

The implications of the theorem herein established. from which Schur’s Theorem read-
ily follows as a corollary. may be summarized as: (1) the smaller the range of characteristic
roots of one matrix in a Hadamard product of two positive semi-definite matrices, the
closer each characteristic root of the Hadamard product to the correspondingly large di-
agonal element of the other matrix; (2) if characteristic roots of a matrix in the Hadamard
product are finite. then the order of each characteristic root of the Hadamard product
has the same order of the correspondingly large diagonal element of the other matrix;
(3) becanse of interchangeability of the two constitnent matrices. there are two sets of
bonnds defined. not necessarily identical. one can choose from. The narrower bounds
herein established may be more useful if constitient matrices are buth positive definite
since otherwise luwer bounds are uniformly unity. One may well find these properties of



the characteristic roots to be of value in the context of theoretical work in sratistics and
elsewhere.

Erte ksoon Im

Department-of Economics, Uneversity of Hawaii at Hilo
200 W. Kawili Street. Hilo, Hawaii 96720-5091. 1S\
E-mai: cam @uhunic.uhee hawai.cdu

Sfax: (808)933-7685

13. Matrix methods in demographic analysis

Consider a female pupulation (P;.,) consisting of n age-groups uver discrete points of time.
Let f; be the probability that a female frum this population in age-group x will give birth
to a daughter (only single births being considered) during the interval to t+1. and this
daughter then survives to t+1. Let s, be the probability that female in the age-group x
at time t will survive to reach the next age-group at time t+1.

A matrix representation of the fertility and mortality process can be achieved through
the definition of a Fertility-Survivorship Matrix (or Leslie Matrix) denoted by L and the
population projection process may be represented as:

[0 6 . . K fa--H0.. 8 0}]A
5100..00 P|
0 0. . . .. . ... 0 0||lnA~

o . | =LpP®

[0 00 0 501 0| P

The first row of the L matrix is filled by non-zero elements in the childbearing age-
groups to represent fertility that occurred during the projection period. The non-zero
elements of the subsequent rows represent the survival probabilities. Assuming an un-
changing fertility and mortality regime (ie L is constant), then the projection precess may
be represented by thus:

P(H-‘Z) - LP(L+1) o L‘ZP(L) S P(H—n) - LnP(L)
To this basic model. the following extensions are introduced:

1. The number of females in age group x at time t. denoted by P,.. and the number
of births that survive to t+1 are assumed to be random variables.

2. A spatial disaggregation of the population by regions is undertaken. thereby requir-
ing the incorporation of inter-regional migration into the projection process.

3. An examination of the stable properties of this projection model is undertaken in
the context of sume well-known results from demographic theory.

George Joseph. Departinent of Economic Studies. Victoria Universily of Manchester,
Manchester M 13 9PL, [nited Kingdom
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14. Derivative of the Eigenvectors of a Symmetric matrix

The authors supply the derivative of an orthogonal matrix of eigenvectors of a real sym-
metric matrix. To illustrare the applicability of their result they consider a real symmetric
randum matrix for which a more or less standard convergence in distribution is assumed
to huld. The well-knuwn delta method is then used to ger the asymprotic distribution of
the urthugonal eigenmatrix of the randum marrix.

Tonu Kollo and Heinz Neudecker, School of Actuarial Sciences and Econometrics.
University of Amnsterdam. Roetersstraat 11 1018 WB \msterdam. The Netherlands

15. Stability conditions for linear stochastic models:
a survey

This paper presents implementations. in Pascal. of the Ronth-Hurwitz conditions for de-
termining the stability of linear differential equations and of the Schur-Cohn conditions
for derermining the stability of linear difference equarions. The two sets of conditions are
intimately related. The Schur-Cohn conditions can be used to determine the stationarity
and invertibility of linear stochastic models of the ARMA variety. The Schur—Cohn con-
ditions are to be found in time-series analysis in a variety of disguises: and. in this paper.
we also demonstrate some surprising relationships between the stability conditions and
some other conditions which seem. at first. to be quite unconnected to them.

D.S.G. Pollock Department of Economics Queen Mary College University of London
Mile End Road London E1 4 NS Tel : +44-71-975-5096 Fax : +44-71-975-5500

16. Power additivity and orthogonality

i=s

Suppose we are given a family {4;};=] of complex n x n matrices. and define 4 = 4, +
...+ A,. We say that the family is power additive if

Ar=Af+. .+ A forallk=1,2,...
and that the family is orthogonal if
Ad;=0 fori A

It is clear that the orthogonality implies power additivity. The converse is not true as the
following example shows

10 01 0 -1
.‘1]—[0 0], 442—[0 0] .‘1.3—[0 0 -

Our aim in this talk is to obtain structural results for orthogonal families of matrices and
for power additive families of matrices. In particular. we will show that in certain cases
these concepts coincide.

P. Semrl and R.E. Hartwig Facully of Mechanical Engineering, [niversity of Maribor.
Smetanova 17, 2000 Maribor, Slovenia
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17. On semi-orthogonality and a special class of matrices

The concept of semi-orthogonality of two cumplex vectors is introduced. As a consequence.
a generalization of the class of orthogonal projectors is investigated and rhe distribution
of a quadraric form is considered.

Gotz Trenkler
Jiirgen (iross
Sren-Oliver Troschke
Department of Stalistics
U'niversity of Dortmund
Vogelpothsweg 37
D-44221 Dortmund. Germany
e-mail: trenkler@amadeus.statistik. uni-dortmund.de

18. Lowner ordering of Matrices with Constraints and
Matrices Extensions of Cauchy—Schwarz Inequality

We consider Lowner ordering of matrices under linear constraints. The restrictions are.
given in the form of linear matrix equations.which involve two matrices to be chosen.
Inequalites are expressed as Lowner ordering of several matrices some of which are given
and others to be chosen. Since the choice of matrices in the constractions is flexible, this
approach provides an efficient method to generate Lowner orderings of matrices which are
generalizations of the Cauchy-Schwarz inequality. Using this technique we have derived
a plenty of inequalites: some of them are new.but many of them have recently appeared
in the literature.

Song-Gui Wang
Beijing Polytechnic University, Beijing, China 100022
and
Erkki P. Liski
University of Tampere. Finland
e-mail: epl@uta.fi

19. On inequality constrained generalized least squares
selections in the general possibly singular
Gauss—Markov model

This paper deals with the general possibly singular linear model. It is assumed that in ad-
dition to the sample information we have some nonstochastic prior information concerning
the unknown regression coefficients that can be expressed in form of linear independent
inequality constraints. Since these constraints are part and parcel of the model the in-
equality constrained generalized least squares (ICGLS) problem arises that contains some
unknown aspects up to now. Based on a projector theoretical approach we show in this
paper how the set of ICGLS selections under the constrained model is related to the set
of GLS selections under the associated 1unconstrained model. As a by-prodict we obtain
an interesting method for determining an ICGLS selection from a GLS selection. Certain

12



special model cases are also considered. Sume of the results discussed in Werner (1990)
and Firouzi (1990) are reobtained.

Hans Joachim Werner
Institule for Econometrics and Operulions Research
Econometrics Unit. University of Bonn
Adenauverallee 24-42. D-33113 Bonn. Germany
orf 710G unitas.or.uni-bonn.de: na.werner Gna-net.omml.gor
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