


Or"ycwi,;irl!J (.'ommiflt:e: 

R. \V .Farebruther. Chairman. (Cnivl'rsity uf ~[an("hl'Ster . L".K.) 

S. J . Pllntanl'n (Cnin~rsitv uf Tampere. Finland) 

G. P. H. Styan (~kGill Cni'·ersity. Canada) 

H. J . \"emer (Cniwrsitv uf Bunn. Germany) 

.1clministmtil,e ..t ,;,;ista/ll: 

S. Farebrother (Ro~'al Shrl'wsbllry Hospital. L".K.1 

Editorial Assistant: 

H. C. Jessen (Cnin·rsity uf :\Ianchester. C.K.) 



1. The Kantorovich Inequality and Five Related 
Inequaliti~s; 191-l-19G9 

\re consider the \\'ell-knu\\"Tl Kanturu\"ich Inequality (19-16): 

'f.·\1· /1 •. \- It ( '\I + ,\,,)~ ., ~:.......:~~:..:...-
(lHf -1A 1,\" 

where I is a real I! " 1 \"ector and .-l is a real II :< It symmetric positi\'e definite matri.."'( . 
with '\1 and .\". respecti\·el~·. its (fixed) largest and smallest. necessarily pusiti\·e. eigen­
milies. \\-e also consider fiYe related inequalities dne respecti\'e ly to Schweitzer (191-1) . 
Pvl~'a-Szegu (1925). Krasnosel'skiI-Krein (1952) . Cassels (1955). and Grenb-Rheinbuldt 
(1959) . and show that these si.."'( inequalities are eqni\"alenr. 
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2. Making statistical quirk:; and anti-quirk:; 

A statistical qnirk is defined to occur in the multiple regression analysis uf a mriable to 
be explaint'd ,,·hen the coefficient of determination for the fnll multiple regression mudel 
exceeds the Sllm uf the coefficients uf determination obtained un all the separate biyariate 
regressions of the yariable to be explained un each e:-.:planatory yariable .. -\nti- quirks can 
be defined as the contmry case 

Quirks and anti-quirks exhibit different difficulties of interpretation. Initial data anal­
yses and descriptiYe statistics provide fust impressions which are contrary tu the anal~·sis 
ubtained on fitting the full mudel. High dimensional multiple correlatiuns are . huwewr. 
cummun features. 

)'Iatri."'( methods are used tu construct design matrices and explained mriables with 
quirk and with anti-quirk properties. }Iethuds used include spectral decompusitiun. sin­
gular value decompusitiun . Gram-Schmidt urthonormalisation and generalised inverses. 

Impressions pro\ided by initial data analyses which are contrary to the conclusions 
reached on by fitting the full model are illustrated graphically where possible. Such ex­
amples dramatically illustrate how fust impressions concerning data and simplistic data 
analysis can lead to incorrect conclusions. 

Philip V Berl.rnrui. 
School of Mathematics and Statistics, 
TILe University of Birmingham, Birmingham Bl.5 iTT, UK 

3. Statistical inference for random planes 

A random p-plane Finn-space is characterized uniquely by the nxn perpen dicular 
projection matrix X'X . where X is any p-frame (i .e. XX = I) spanning F . Let T denote 
the sum of a sample of N such projection matrices. Let D be diagonal with diagonal 
elements t.he eigenvalues of T in decreasin g order. and !\tIm orthogonal with columns the 
curresponding eigenvectors. Then we write, in accord with the principal a."'(is theorem: 

T L XkX~ = MmDM:" (principal form) 
k 

where k l , .. . , N 

Part itiun !\tIm into p- and q-frames: !\tIm = (!\tImpl\Imq) . where n = p + q. Span( ,\/mp) is 
taken to be t.he sample mean p-plane since !\t!mp corresponds to the large st p eigenvalues 
of D . 

The partitlUn of Mm induces a partitioning 1)[ M:"X into the pxp matri."'( M:"pX 
over the qxp matrix M~X. The closer span(X) to span(Mmp), the closer J/:"p-X to an 



orthogonal matrix and the duser !\I:".,X to the null matrix. \\'e seek to meaSllre the 
de\'iatiun uf span(X) from s!-,an(.\I",p) uy a qxp "errur matrL"'(" that is the same fur all 
p-frames X with the same span. sinr e unly span(X) is rele\'ant for this. 1\1:,,,,X will nut 
du becallse it depends un more than span(X): permuting the columns uf X . for example. 
duesn 'r rhange the span Ullt resnlts in different entries for 1\1",~X . ~Iure a!-,propriate is 
rhe q:-""jJ ,".'fill/"fni {'m'" IIIlllr;x E",k fur X, .. which depends only u n span(Xd (Du\\-r\s. 
in press). and is gi\'en by 

Emk = 1\(",Xk R D.l ) 

where R = [( 1\ l;"pXk)' (1\ I;"pXk) r ~ (1\ I;"pXS is a p:-""jJ and ort hogonal. 

Errur matrices ran be used to test hyputheses auum the mean p-plane fur the Bingham 
diSTribution uf random p-planes in n-space. The Bingham distribmion has the forms: 

f (XkX~ ) = C (,\) etr (XkX~G) = c (>.J exp [-~ )" ('2k'je~jk)] 
- I) 

where c (AJ is a nonning constant. the symmetric parameter matrL,{ G = lV1>.1\.-(' ( prin­
cipal form). the first p elements on the diagonal ,\ of sum to zero. the k;j are functions 
6f >. . and the eijk are elements of the error mal.rix Ek obtained from ('2) by replacing 
Mm= (MmpMmq) therein with M = (lHplVlq ). When thek;j are large the eijk are approx­
imately independent and normall y dist.ributed with null means and with variances the 
reciprocals of the 2k;j (Downs. in press). To construct a test of the null hypothesis that 
span(Mp)=span(MOp}. first estimate M under the null hypothesis by Mo. par titioned as 
Mo=(l\IOp~ lV~~) . where 

ROp [(M;"pMOp),(MmpMOp)]- t (:\l;"pMOp)' , 

ROq [(M;"q ;HOq)'(M;"qMoq)1-4 (M~MOq)' 

and 1\~ is any q-frame orthogonal to l'vIOp. Then get the null error matrices EOk 

(k=l.. ... n) from (2) by using Mo for Mm. Form N pqxl supervectors eok from the N EOk • 

and get their sample mean vector and dispersion matrix. Then test the null hypothesis 
that span(Mp)=span(l\'~) by a standard Hotelling-type F-test of the hypothesis that 
E(eOk)=O. 

Tom Downs. 
The L'ni1·ersil.y of Texas Health Science Center , 
School of Public H~lLlIh.. 

P.O. Box 20186. 
Houston. Texas 

4. A class of statistical estimators related to princ:ipal 
components 

In this paper we investigate the algebraic relationships between some of the mure familiar 
estimatiun and testing prurednres employed in multivariate econometrics and the princi­
pal cumponents and runtinnnm regressiun tedmiqlles of mnltivariate statistics. 



Dr fl. W.l-lm,bmllltT. Dfflllrtll/wi oj t:cVIIV/TIic SllIciiu;. l'ictvriu [·"il'e.rsily vJ .I/ulI.:II­
".~t cr . .I/(17!clwsl~r ,II /.'l !JJJL. rrrliini Ki,,!/dvrn, 

fl. lV.l·im~brvlht'1·<.hl/(lI/. . tlc.lLl.: 

5. Some properties of shrinkage parameters of operational ridge 
regression estimators 

It is a known fact that the Ordinary Least Squares estimator does not pro\'ide satisfac­
tur~' estimates when the regressiun equatiun is a/f('('ted uy multicullinearity. In this case 
it may ue preferraule tu use Ridge Regressiun (RR) which has been 1lsefll11y applied in 
diverse areas s1lch as chemistry. criminulogy and ecunumics. Huwever these estimators 
depend upun sume shrinkage parameters whuse uptimal \'alnes are \Ulknuwn. Ob\'iullsI\' 
the properties uf the RR estimators \\;ll depend 1lpon huw \vell the shrinkage parameters 
ha\'e been estimated. For this reasun several de\;ces ha\'e been prupused tu estimate 
t.hese parameters. and their behm;unr shullld help to explain the beha\;onr uf the differ­
ent operational RR estimators. It is the purpose of this paper to deri\'e the distribution 
and moments of order one and two of some commonly used estimators of the shrinkage 
parameters. These estimators are in fact ratios of quadratic forms of non-central normal 
random variables. Gi\'en the complexity of the results. some numerical calculations ",;ll 
be presented. The expected contribution of this work is to be able t.o determine conditions 
under which an operational RR estimator wonld be preferable to the others. 

Dr L Firinguetti. Departamento de Matemalica. y e. C, Unitlersidad de Santiago de 
Chile Casil/a ·'107 - Correo 2 Santiago Chile, 

LFIRING [!@USACHVMl.CL 

6. Second order methods for computing linear minimax 
estimators · 

In a linear statistical model with restricted parameter set, alternatives to the L-east 
Squares Estimator are of interest. One alternative is the linear rrUnh-nax estimator. :nin­
imizing among the linear estimators the mmomum mean squared error (the ma.xirnum 
being taken over the parameter set) . 

\Ve address to a situation which has been studied fairly extensively. namely the case 
that the parameter comes from an ellipsoid. the covariance model matri.'C is known and 
positive definite , and the mean value model matri.'C has full column rank Then the linear 
minima.'C estimator is obtainable from solutions M" to the 'dnar problem 

minimize ~(M) := trace [ C (D + ;H)-I] over AI E .\1{ , (6.1) 

where C and D are certain positive semidefinite and positive definite (k x k}-matrices. 
resp .. and ; \1{ is the set of positive definite (k x k)-matrices M with I.mce(M) = l. 
11ureover. it is knuwn that if J/n is a seqnence of feasible matrices for (1) converging to 
the optimlUTI. then the currespunding sequence of linear estimators tends tu the minima.'C 
est.imator. 

For soh;ng (1) numerically, we propose a Xewton type methud. described in Gaffke 
& Heiligers (1996) (Optimization 36. pp . . n-57) : The gradient G n and t.he Hessian lln 
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(viewed ,"IS self-adjuint linear I)peratur frum S!lIIl(k) tu Syl/I.(k)) uf'l> at each puint .\/n 
uf the iterat.ivn are :l\-ailaule. and thlls a search direcriun for the next Xewtun step can 
be uutained uy soh-ing the qlladratic sllbpruulem 

minimize tmCe! (;n( .\1 - .\fn) -+- ~(.\I- .\I,,}I1,,«_\1- .\1,,)) ] u\·ef.ll E .v/. (6.:2) 

Instead of suh'ing (:n "'e feplace the feasiuility set ~VI u\· 

whefe .L"I ••• • • .L", and YI , . . . . !lk afe orthunormal systems of eigem'ectors uf Gn and j/n. 

[esp .. correspunding to the nonzero eigenmlues. For this mudified problem the Higgins 
i: Polak method finds in an acceptable time a soilltiun accurate enough to lead to a goud 
Xe,,·tun step in the u\'erall algorithm. 

Combining the obtained search directiuns with slutable steplengths. theoretic com'er­
gence uf the fesulting sequence ,\In to the optimlUn can be proven. :\Iureo"eL in ntunewus . 
randomly generated examples the procedure also worked well. as for problem sizes up to 
k = 30 in the very most cases not more than 100 iterations were required to ubtain linear 
,est.imators with guaranteed 'minim~'(' efficiency 1 - 10-6

. 

Robert Gl1JJke l1nd Berthold Heiligers 
Bertho/d,H eiligers@.Ml1thematik. Uni - Magdeburg, De 

7. Approximating a matrix of nominal values 

The rank r least squares approximation x,. to a matri.'( X of real nwnbers is a funda­
mental result of matri.."( approximation with a well-known solution expressed in terms of 
the simgular value decomposition of X (Eckart and Young, 1936), When X is a matri."( 
of nominal (categorical. qualitative) values it is usual to replace the category names by 
nwnerica.l scures (uanitification) estimated by optimising a ratio of two sums of squares 
leading to two-sided eigenvalue probl ms as in ),[ultiple Correspondence Analysis and 
similar methods. Cnfortunately, this gives a numericai Xr wheras it may be more ap­
propriate to approximate X by another nominal matrL"(. The paper will show how the 
rank of a nominal matrix (ominal rank) may be defined in terms of an r-dimensional 
geometrical representation of a nominal matri."( in a similar manner to how a rank r real 
matrix may be fegarded as a set of points in Rr, The definition may also be adapted to 
cate for ordered categorical ,'ariables (rdinal rank) . Then the best approximation may 
be defined as the nominal matrL,,( Xr which best matches X in terms of the number of 
agreements in their corresponding nominal values, It will be shuwn that this may be 
expressed as a constrained least squares approximation to an indicator matrix. Algo­
rithms for maximising the number of agreements wOlud lead to interesting new forms of 
multidimensiunal scaling Lut remain to be developed, Even withollt an ptimal algorithm 
. the new definition uf numinal rank permits a nominal Xr to be derived frum quantified 
Xr and hence the relative performances of existing (snb-optimal) quantificatiun met.hods 
may ue assessed. Examples will illustrate these ideas, 

Dr I e. Gower. Pac-ulty of Mathematics. Open Uni1Jer.sity Milton K"YTW.9 Ml(. Unitl'.d 
Kingdom. J. C. (;ow/,:r ,iJopen.lLc. llk 
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8. Iterative majorization for minimizing complicated 
functions 

Se\'eral standard methods exist fur minimizing a (multi\':uiable) function. Here we fu­
cus un the relatiwly nnknown methud of iterati\'e majorization (Ortega .s.: Rheinboldt . 
1970: De Leeuw. 19i1. 1988. 1993: Heiser. 1995). This method has been successfully 
applied tu minimize seyeral loss hUlctions. One of the key featllres of iterati\'e majuriza­
tion is t.hat the sequence of hUlctiun values decreases monotonicall:-·. For hUlct.iuns that 
are bounded below ur sltfficiently constrained. this property implies that nsnally a local 
minimum is fOlUld. Two particlllarl~' usehtl fmms of majurizatiun are distinguished: lin­
ear and quadratic majurization (De Leellw. 1993: Groenen &:: Heiser. in press). Sewral 
majorization ineqllalities from the literatnre are discussed and categorized according this 
classification. 

:"lajorizatiun is illustrated in two applications. First. we discuss the nmneling method 
for glubal upt.imization (:"Ionta1vo. 1979: Groenen .s.: Heiser. in press). This technique 
searches for increasingly better local minima. It consists of a local phase in which a local 
minimmn is ubtained. and a tlUlneling phase in which we search for a different cunfigu­
ratiun with the same luss fnnction value. The second application comes from the area of 
distance-based multivariate analysis (:"Ieulman. 1986. 1992) . which has a strong relation 
with multidimensional scaling. Here. majorization is used to update the configuration 
and to find optimal nonlinear transformations of the variables. 

Patrick J. F. Groenen. Department 0/ Data Thwry, PO Box 9.5.5.5, 2:100 RB Leiden. 
77~e Netherlands, groenen@ruLs:JO.jsw.leidenuniv.nl. Supported by The Netherlands Or­
ganization for Scientific Research (NWO) by gmnt nr . .57.5-67-0.5.'1 for the 'PIONEER' 
project 'Subject Oriented Multivariate Analysis'. 

9. Solving a constrained nonnegative least squares problem within 
an iterative majorization scheme 

:'Jc:;.ctc:;.~ sp!i.'le tr:msformatiens are !ill appealing ,,,,It''l'!I.atiVf~ t.o general monotone trans­
formations in nonlinear multivariate analysis (:VIVA) and distance-based :VIVA (:"'Ieulman. 
1992). In this context. fitting monotone spline-transformations amounts to repeatedly 
soh;ng a least-squares problem (LS) , subjected to both nonnegativity constraints on the 
parameters and a length constraint on the transformed variable. Since the overall min­
imization problem in distance-based :\IVA constitutes a major computational task. it is 
necessary to find the optimal transformations as efficiently as possible. It will be shown 
that within the larger iterative scheme for distance-based :\IVA. the constrained LS prob­
lem basically can be resolved using two approaches. First , by using an analytic procedure 
to solve the LS problem subject to the nonnegativity constraints (Lawson & Hanson, 1992) 
and afterwards applying the length constraint. Second. by using an iterative alternating 
least squares approach that satisfies both types of constraints in each iteration. Csing 
the results of a :VIonte-Carlo study, the efficiency of both approaches will be compared 
in terms of the quality of the fOIUld minimum and the convergence speed of the overall 
algorithm. 
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D"pur/moll of Dulll '[7,./'01,/, I.t:id.." [ -fliNTS/ly. P.O. /10L 9 ;j;j.j. J:/()() llB Leidw. 77te 

.V"ilt"r/u1Uh. "-T1U1ii: groell.t?1t · ,rrttL,.1().f~w.l"id"I/.I/IIil" IIi. 
:\(t'ulman. J .J. (199::!) . Tht' intt'grariun uf mllltidimt'nsiunal scaling and multi\'miatt' anal­
ysis with ulJtimal transfurmatiuns. PSI/chumFiriku . . n.5:l9-565. 
Lawsun. L. and Hanson. R.J . (19,.1). Su/i,jllg Imsl 8'lltllreS pmble. ms. Englewuvd Cliffs . 
:,(J: Prentice-Hall. 

10. Issues involved III star orderings and their statistical 
applications 

The star ordering introduced by Drazin (19,8) is a \-t'ry restrictive urdering. We ana­
lyze matri..'( partial orderings which are less restrictive. Examples uf such urderings are 
the It'ft star partial ordering. the tight star partial ordering (intruduced by Baksalary 
and :\Iitra. LAA. U9.1991). and l7-minus partial ordering (introduced by Baksalary and 
Hauke. LAA. 96. 1987). These orderings imply the minus partial ordering. There exist 
other two orderings extending the star partial ordering which do not imply the minus 
partial ordering. The first ~\'as introduced by Baksalary and Hauke. LAA. 127. (1990) 
and it coincides with the minus partial ordering of the :\!oore--Penrose inverses of ordered 
matrices. Tu define the second one let us ubserve that matrices ordered with respect 
to the star ordering belong to a family S of simultaneously singular-value decomposable 
matrices from the set of complex rectangular matrices. i.e. A, B E S if matrices AB" 
and A"B are positive semi-definite. In the family we can define the following ordering 

A ~G B if A, B E Sand AB" - AA" is positive semi-definite. 

Above orderings are used in some statist cal problems connected with estimation in 
the Gauss-markov model and with distributional properties of quadratic forms. 

Dr Jan Hauke Adam Mickiewic=. Unil'ersiiy [Jnit'en-ily 
I/l..~titute of Socio-Eronomic Geogmphy and Spatial Planning 
F'redr!/ 10 
61-701 Pu::n.an, Poland 
7H: ("'48-61) .'j2fi.'18.'1 
[-'ax: (-"-48-61) .)24·7.76 
e-mail: jhaukdihum.amll.edll.pl 

11. Linear Sufficiency and Admissibility in Restricted 
Linear Models 

The linearly sufficient and admissible estimators of parameters vector in linear regression 
models are fotmd in ~!arkiewicz (1996) to be precisely the general rigde estimat.ors. 

I Department of Data Thmry. PO Box %.').~. 2300 RB Leiden. The Netherlands. 
c,.; .tJ r1Jb:JO.fsw .leideDuni,·.nl. Supportctl by The Netherlands Orl\3nizatiou for Sd" nti/ic n...,..",rch 
(NWO) by grant nr. :;;:-,..oT..().1:! for the ' PIONEER' project 'Subjoct Oriente<! :\[1Jlti"a rialc Analysis '. 
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Linenr snfficiency and admissibility is a desirable property eSPffially in restricted 
linear models in which \mbiased estimaturs are inadmissible. In snch models the linearl~' 

sufficient and admissible estimaturs are identified as a special subclass uf the class of 
general ridge estimators. 

This characterization is based un a decumpusition result fur the admissible estimaturs 
assoriated with the subclass uf estimators with bo\mded mean squared error. FoUowing 
Catfke and Heiligers (1989). and Heiligers (199:j) we describe them as sums uf the only 
admissible estimator of sume .mrestricted subparnmeter with bo.mded mean squared er­
ror. and of admissible estimarors of rertain completel~' restrirted snbparameter. 

Caflke. X. and B. Heiligers (1989). Ba~'es-. admissible. and minima.""( linear estimators 
in linear models with restricted parameter space. Statistics 20. -1.8,-508. 

Heiligers. B. (199:3). Linear Ba\'es and minimax estimation in linear models "'ith 
partiall~' restricted pnrnmeter space. J. Statist . Plnrm. Inference 36. 175-18-1.. 

:'.Inrkiewicz. A. (1996). Characterizatiun of general ridge extimaturs. Statistics and 
Probability Letters 27. 1-1.5-1-1.8. 

Berthold Heiligers. Fak-ulliit 
Jur Mathematik Jnstitut Jur l\1athematische StocJul.slik. Unil'e1'sitiit .IJagdeb-u1"9 Pos/Jach 
4120 D-.'J9106 AJagdebUfy, Germany, 
e-mail: heiliger@i1n5t.math.uni-magdeb·urg.de 
Augustyn Markiewicz* Department oj Ma/h.emCLtical and StatisticCLI .\ie/hods. Agricultuml 
University of Poznan Wojska Polski ego 28 PL-606!J7 Po:;nm!. Poland e-mail: amarkiJowl.au.po= 

12. Narrower Bounds for Characteristic Roots of Hadamard 
Product 

J. Schur (1911) established the upper and lower bounds for characteristic roots of Hadamnrd 
product, which are discussed by C. Styan (1973) and R. Hom (1990) in their respective 
survey articles on Hadamard product. However, the bounds as established by Schur are 
Idoba! bounds for all rlIaracteristic roots. hence may be of a limited use. 

In this paper, we establish a theorem which defines the b01mds narrower and specific 
to each characteristic root: Define a Hadamard product as H : A (:;. B where A and Bare 
positive semi-definite matrices of order n. Then. Ai(') and Ai(') denoting, respectively. 
characteristic roots and diagonal elements of the argument matri.""( both in descending 
order. An (A) ai (B) ~ Ai (H) ~ A1 (A)al (B)with A and B interchangeable. 

The implications of the theorem herein established. from which Schur's Theorem read­
ily follows as a corollary. may be sununarized as: (1) the smaller the range of characteristic 
roots of one matrix in a Hadamard product of two positive semi-definite matrices, the 
closer each characteristic root of the Hadamard product to the correspondingly large di­
agonal element of the other matrix: (2) if characteristic roots of a matri.x in the Hadamard 
product are finite. then the order of earh characteristic root of the Hadamard prodnct 
has the same order of the correspondingly large diagonal element of the other matri.""(; 
(:3) because of interchangeability of the two constituent matrices. there are two sets of 
bUlmds defined. nut necessarily identical. one can choose from. The narrower bo.mds 
herein established may be mure useflll if constitllent matrices are buth positive definite 
since otherwise luwer bunnds are .miformly .mity. One may well find these properties uf 
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the charactt'ristic roots tu be uf value in the cuntext uf theuretical work in statistics and 
elsewht're. 

!;'ri .. 1"-'0011 1m 
JJ~P(//1111t' I// ~{lf 1:" 'ollomics, CILll"ersi/ .11 of lIu w"ij tit 1li/o 
.!()(} II". Kuwi/i i trr-d. lIdo. lItLUJuii !Jli7,!O-.{II!JI . ( "Sol 
E-mud: <:1111 Ji'u}w II Lr. "hcc .lu1"I1:uii.nill 
faJ:: r !"i08 j!J:/.'I- .}(i,,·.j 

13. Matrix methods ill demographic analysis 

Cunsider a female poplI.lation (P x.,) consisting uf n age-groll.ps O\'er discrete points of time. 
Let fx be the probability that a female frum this IJopnlar.iun in ag~gruup x "ill give binh 
to a daughter (unl.\· single births being considered) during the inten'a1 to t+l. and this 
daughter then sun"jyes to t+ 1. Let Sx be the probability that female in the age-group x 
at time t will SUf\;\"e to reach the next age-grollp at t.ime t+ l. 

A matri.'( representatiun uf the fertility and murtality process can be achieved throngh 
,the definition of a Fertility-Survivorship \Iatri..'C (ur Leslie \Iatri..'C) denoted by L and the 
popnlation projection process may be represented as: 

0 0 I, h !k 0 0 0 P, 
5, 0 0 0 0 P, 
0 S2 0 0 0 P, 

p(t + I) = = LP(t) 

0 0 0 0 8 n -l 0 Pn 

The first row of the L matrix is filled by non-zero elements in the childbearing age­
groups to represent fertility that occurred during the projection period. The non-zero 
elements of the subsequent rows represent the survival probabilities, Asswning an un­
changing fertility and mortality regime (ie L is constant) , then th~ projection process may 
be represented by thus: 

pitH) = LP(t+l) = L2p(t) => p(t+n) = Lnp(t) 

To this basic mudel. the following extensions are introduced: 

1. The number of females in age group X at time t . denoted by Pr ., and the munber 
of births that Sl.ln;ve to t+ 1 are asswned to be random variables. 

2. A spatial disaggregation uf the pupulation by regions is undertaken. thereby requir­
ing the incorporation of inter-regional migration into the projection process . 

.1. An examinatiun of the stable properties of this projection model is Imdertaken in 
the context uf S<Jme well-knuwn results from demographic theory. 

C~.lJT!Je Joseph. Df!parl.mml. of Br:onomic Studies. Victoria Univl!nity of lHanchcster, 
Manch.ester .HI:! !JPL. flnit.eel KiTl..fJrLom 
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14. Derivative of the Eigenvectors of a Symmetric matrix 

The allfhurs supply the deri\'atiw 0f an orrhogunal matrix uf eigenn·('tors uf a real sym­
metric matrix. To illustrate the applicability uf their result they ("un5ider a real symmetric 
randum marri.x for which a mure or less standard cum'ergence in distribution is assumed 
to huld. The well-knuwn delta method is then Ilsed to get the asymptutic distribllfiun .)f 
the 0rthugonal eigenmatrix uf the randum matrix. 

TOIIlL Kollo a7ul llein:: .Vt~lLdecker. School oj Act1Larial SCinlCfS 111,,1 Econometrics. 
r'nil'fTsity oj .. llTts/uua11/.. Roe/erssfrout I I If) 18 WB . Im.,/cniam. nlt~ ,Velher/a1!ds 

15. Stability conditions for linear stochastic models: 
a survey 

This paper presents implementations. in Pascal. 0f the RUllth-Hnrwitz conditions for de­
termining the stability of linear differential equations and of the Schur-Cohn conditions 
for determining the stability of linear difference equati0ns. The two sets of conditions are 
intimately related. The Sc.hur- Cohn conditions can be lIsed to determine the stationarity 
and invertibility of linear stochastic models of the AR)'IA variety. The Schur-Cohn con­
ditions are to be fOlmd in time-series analysis in a variety of disguises: and. in this paper. 
we also demonstrate some surprising relationships between the stability conditions and 
some other conditions which seem. at first . to be quite unconnected ro them. 

D.S.C. Pollock Department oj Economics Queen Mary College Unit1ersity oj London 
Mile End Road London E1 4 NS Tel: +44-71-97.;-5096 Fax : +44-71-97.5-5500 

16. Power additivity and orthogonality 

Suppose we are given a family {Ai}~r of complex n x 11 matrices . and define .4 = 04\ + 
... + A .•. We say that the family is power additive if 

Ak = A~ + . .. +.4! for all k = 1, 2, . .. 

and that the family is orthogonal if 

.4;Aj = 0 Jor i Fj. 

It is clear that the orthogonality implies power additivity. The com'erse is not true as the 
following example shows 

-1] o . 

Our aim in this talk is to obtain structural results for orthogonal families of matrices and 
for power additive families of matrices. In particular. we will shuw that in certain cases 
these concepts coincide. 

P. S"mrl mul R .E. Hartwig Fawlty oj J.ler.lumical Engineerinfj, Cnillersity oj Maribor. 
Smeian01'a 17, 20()() Maribor, Slot'eniu 
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17. On semi-orthogonality and a special class of matrices 

The cunCE'pr uf sE'mi-urthugunaliry uf twu cumplE'x VE'cturs is intrudllcE'd. As a runseqllE'nce. 
a genE'ralizariun uf thE' dass uf urthugonal prujE'cturs is im"l'stigatE'd and rhE' distribution 
uf a quadratic -form is runsidered. 

e ,il: TrmkllT 
'/iir'l('1/, (;m88 

S.,.w- Oli,."" Tmschke 
f)"pllrt1llUlI oj Slut i:;tics 
r.·"il'~rsily of f)or·tmulIll 
\ioqdpolll.Swpy 87 
0-44221 Dortmulld. GenTlany 
e-mail: trenkler flamadeus.slalislik. ulli-tlorfmU/ul.de 

18. Lowner ordering of lVIatrices with Constraints and 
lVIatrices Extensions of Cauchy-Schwarz Inequality 

\Ve consider Lowner ordering of matrices under linear constraints. The restrictions are_ 
given in the form of linear matrL'( equations. which involve two matrices to be chosen. 
Inequalites are expressed as LO~ller ordering of se\-eral matrices some of which are gi\-en 
and others to be chosen. Since the choice of matrices in the constractions is flexible , this 
approach provides an efficient method to generate Lowner orderings of matrices which are 
generalizations of the Cauchy-Schwarz inequality. Dsing this technique we have derived 
a plenty of inequalites: some of them are new,but many of them have recently appeared 
in the literature. 

Song-Cui Wang 
Beijing Polyt.echnic University. Beijing. China 100022 
and 
Erkki P. Lish 
University oj Tampere. Finland 
e-mail: ep/@uta.ji 

19. On inequality constrained generalized least squares 
selections in the general possibly singular 
Gauss-Markov model 

This paper deals with the general possibly singular linear model. It is assumed that in ad­
ditiun to the sample information we have some nonstochastic prior information concerning 
the unknown regressiun c:oefficients that can be expressed in form of linear independent 
inequality constraints. Since these constraints are part and parcel of the model the in­
equality constrained generalized least squares (lCGLS) problem arises that contains some 
lmknown aspects IIp to now. Based on a projector theoretical approach we show in this 
paper huw the set uf rCGLS select.ions lIDder the constrained model is related to the set 
of GLS selections under the associated lIDconstrained model. As a by-product we obtain 
an interesting met.hud for det.ermining an rCGLS selection from a GLS select.ion. Certain 
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sp{'('ial model cases are alsu cunsiderro. Sume uf [he resnlts disCllssE"d in \\"erner (1990) 
and Firouzi (1990) ;lre reubtained. 

/llll/.S Juachim !I""m t:r 

i/lstitute for ECUIIUIllt'tl-ics Ilwl ()pemtiu/ls Uesnzrc/t 
Eco/lumt:lncs [·ni/ . Cnil'ITsily of RUlli! 

. 1t/'71llllemllp.f: .!4-.{!. f)- ;i.'l1! :] !3UII/! . C~"'II(l1lY 

ul·4i() ,fJWli/llS. ur.ltlti-/;OIt/t.dl': nll. /lJt:'7Ier (full-net . uml. !fOI' 



lrllkJ: <'[ j-l"rllCip"til/fj .-lilt/WI'S 

P. Bertrand. stTliol/ .! 

J. S. Chil-'rnan . I/O Ilb"tm.-t 

T. OU\\I1S. gcliOIl ) 

R. \\-. FareLrurher. .,,,clio1/. 4 

L. Fil-ingllerti . . ~utio/l .j 

J . C. GuWE'r. ., f-dio" 7 

P. GnJt"nen. :wc:/io l/. " rllld !J 

J. HaukE'. oeclio1/. 10 

B. Heiliger. section 6 and 11 

E. 1. Im . .,eclion 12 

G. G. Joseph . . ~ectio/l 13 

A. )..Iarkiewicz. sl!ctiorl 10 

H_ Xeudecker. section 14 

D. S.G. Pollock. section 1.5 

P. Semrl. section 16 

G. P. H. Styan. seclion 1 

G. Trenkler. section 17 

S. O. Troschke . . section 17 

B. J. \ 'an Os. seclion 9 

S. \rang . . 5P.clion 18 

H. J. \rerner. Sl'.cliulI IV 

l-! 


