> Wepartment of Mathematics and Statistics presents

# The 16th International Workshop on <br> Matrices and Statistics 

## UNIVERSITY OF WINDSOR

JUNE 1-3, 2007

(in celebration of Dr. George Styan's 70th Birthday)

## PROGRAM

## THANKS TO OUR SPONSORS:



# CENTRE FOR STATISTICAL CONSULTING, RESEARCH AND LEARNING SERVICES 

Department of Mathematics and Statistics

## University of Windsor

## Director

Dr. S. Ejaz Ahmed
C. Young

Administrative Secretary

## Consultants

Dr. Abdo Alfakih

Dr. Richard Caron
Dr. Karen Fung, P. Stat.
Dr. Myron Hlynka, P. Stat.
Dr. Abdul Hussein
Dr. Sévérien Nkurunziza
Dr. Sudir Paul

For further information and for a free estimate please contact:

Dept. of Mathematics and Statistics University of Windsor
Windsor, Ontario, N9B 3P4
Phone: (519) 253-3000 ext. 3015
Fax: (519) 971-3649
E-mail cscrs@uwindsor.ca

The Center for Statistical Consulting, Research and Learning Services (CSCRLS) has been formed within the Department of Mathematics and Statistics at the University of Windsor to provide statistical and mathematical services to clients both on campus and outside organizations.

The goals of the CSCRLS are to:
> carry out activities to promote an environment conducive to increasing awareness and usefulness of the statistical and mathematical sciences
> increase the use of statistical methods to solve scientific, business and industry problems
> enhance prospects for research collaboration
> develop a link between the University and the community

Services available:

* Design and Analysis of Experiments and Surveys
* Data Exploration and Analysis
* Complex Data Sets of Varying Quality Collected

From Various Sources

* Statistical Quality Assurance
* Scheduling and Optimization
* Numerical Computations and Monte Carlo Simulation
* Data Mining and Predictive Modeling
* SPSS, SAS and S-PLUS Coding
* Probability Models
* Short Courses and Professional Development
* Expert Witness Testimony

First hour of consultation is free.

Visit our website:
http://www.uwindsor.ca/cscrs

June 1, 2007

Dear Participants:

## Welcome to the 16th International Workshop on Matrices and Statistics!!!

The purpose of this Workshop is to stimulate research, in an informal setting, and to foster the collaboration of researchers in the interface between matrix theory and statistics. The Workshop will feature both invited and contributed talks, including some talks by graduate students. A special issue of the journal Linear Algebra and its Applications will be published, devoted to selected papers presented at the Workshop. I think now is the time to form a Society associated with these international workshops on matrices and statistics, which would provide support and assistance to young researchers working in this area.

This is also a main concern of George Styan, who will have his 70th birthday on September 10 this year. Our Workshop celebrates this forthcoming event. It is a pleasure for me to express our gratitude and recognition for his ongoing interest in matrices and statistics. He is the only participant in this 16th Workshop who took part in all the others. Many of us will remember his efforts in organizing the 4th Workshop in Montreal in 1995. This 16th Workshop benefits again from his support and expertise.

I would like to take this opportunity to thank our speakers for coming to Windsor. Their time and valuable input are greatly appreciated. Furthermore I would also like to acknowledge our sponsors, especially the Fields Institute for Research in Mathematical Sciences, whose support has made this event possible. This Workshop is a satellite meeting of the 35th Annual Meeting of the Statistical Society of Canada, St. John's, Newfoundland, June 10-13, 2007.

I am most grateful to all the members of the Local Organizing Committee (LOC) and the International Organizing Committee (IOC) for making this Workshop a reality. My very special thanks go to Christine Young for putting it all together, from poster to website and for handling many other details. I will take this opportunity to thank all my colleagues (both faculty and staff) at the Department of Mathematics and Statistics, University of Windsor, for their help and support not only for this event, but over the past 5 years during my headship.

Above all, I am delighted that you all have come to this Workshop. I sincerely hope that you will enjoy it both scientifically and socially!

Cordially yours,

S. Ejaz Ahmed, Ph.D.

Professor and Head: Department of Mathematics and Statistics
University of Windsor, Windsor, Ontario, Canada

# INTERNATIONAL ORGANIZING COMMITTEE 

George P. H. Styan - Chair

McGill University, CANADA
Simo Puntanen - Vice-chair
University of Tampere, FINLAND
S. Ejaz Ahmed - Local Organizing Chair

University of Windsor, CANADA
Jeffrey J. Hunter
Massey University, Albany Campus, NEW ZEALAND
Augustyn Markiewicz
Agricultural University of Poznan, POLAND
Götz Trenkler
Universität Dortmund, GERMANY
Dietrich von Rosen
Swedish University of Agricultural Sciences, SWEDEN
Hans Joachim Werner
Universität Bonn, GERMANY

## LOCAL ORGANIZING COMMITTEE

S. Ejaz Ahmed - Chair

Lihua An
Shahid Bhatti
Myron Hlynka
Md. Shakhawat Hossein

Abdul Hussein
Sévérien Nkurunziza
Wai Ling Yee
Christine Young - Workshop Administrator

## Friday June 1

| 8:00-9:00 | REGISTRATION |
| :---: | :---: |
|  | OPENING REMARKS |
| 9:00-9:15 | S. Ejaz Ahmed, Chair, Local Organizing Committee, IWMS Head, Department of Mathematics and Statistics |
|  | Neil Gold, Provost and Vice-President, Academic |
|  | SESSION 1 |
|  | Session Chair: |
|  | George P. H. Styan, Chair, International Organizing Committee, IWMS McGill University, CANADA |
| 9:15-10:00 | KEYNOTE SPEAKER |
|  | Peter Loly, University of Manitoba, CANADA <br> Eigenvalues in the universe of matrix elements $1, \ldots, n^{2}[\mathrm{~W}-24]$ |
| 10:00-10:30 | Götz Trenkler, Universität Dortmund, GERMANY On the Moore-Penrose inverse of magic squares [W-41] |
| 10:30-11:00 | Kimmo Vehkalahti, University of Helsinki, FINLAND <br> Some comments on magic squares and Survo puzzles [W-43] |
| 11:00-11:30 | Ka Lok Chu, Dawson College, CANADA <br> Some comments on magic square matrices with three nonzero eigenvalues [ W -8] |
| 11:30-11:45 | COFFEE BREAK |

## SESSION 2

Session Chair:
Jeffrey J. Hunter, International Organizing Committee, IWMS
Massey University, Albany Campus, NEW ZEALAND

Karl E. Gustafson, University of Colorado, USA
11:45-12:15 Operator trigonometry of Hotelling correlation, Frobenius condition, Penrose twistor [W-14]

12:15-12:45

12:45-1:15
Morteza Seddighin, Indiana University East, USA
Applications of antieigenvalue techniques in statistics [W-35]
Ravindra Khattree, Oakland University, USA
Antieigenvalues and antieigenvectors in applied statistics [W-20]

## FRIDAY JUNE 1 (CONT’D)

## SESSION 3

Session Chair:

Simo Puntanen, Vice-Chair, International Organizing Committee, IWMS
University of Tampere, FINLAND

George P. H. Styan, McGill University, CANADA
A philatelic excursion with Jeff Hunter in probability and matrix theory [W-37]
Jeffrey J. Hunter, Massey University, Albany Campus, NEW ZEALAND Coupling and mixing times in Markov chains [W-18]

Stanley L. Sclove, University of Illinois at Chicago, USA
Matric musings in statistical finance [W-34]
Toulope Sajobi, University of Windsor, CANADA
A very simple Markov transition matrix [W-33]
Myron Hlynka, University of Windsor, CANADA
Two types of retrial queue [W-16]

4:00-4:15

4:15-4:45

4:45-5:15

5:15-5:30

# SESSION 4 

Session Chair:
Oskar Maria Baksalary, Adam Mickiewicz University, POLAND

Yongge Tian, Shanghai University of Finance and Economics, CHINA
Sum decompositions of weighted least-squares estimators under a general linear model [W-40]

Jarkko M. Isotalo, University of Tampere, FINLAND
Linear sufficiency and completeness in the partitioned linear model [W-19]
Simo Puntanen, University of Tampere, FINLAND
Effect of adding regressors on the equality of the OLSE and BLUE [W-30]

## SAtURDAY JUNE 2

## SESSION 5

Session Chair:
Götz Trenkler, International Organizing Committee, IWMS Universität Dortmund, GERMANY

| 8:30-9:00 | Hans Joachim Werner, Universität Bonn, GERMANY <br> On partitioned projectors [W-45] |
| :--- | :--- |
| 9:00-9:30 | Oskar Baksalary, Adam Mickiewicz University, POLAND <br> On two representations of projectors [W-4] |
| 9:30-10:00 | K.P.S. Bhaskara Rao, Indiana State University, USA <br> A result on idempotent matrices [W-32] |
| 10:00-10:30 | Jani Virtanen, University of Helsinki, FINLAND <br> Norms of Toeplitz matrices and their asymptotic behaviour [W-44] |
| 10:30-10:45 | COFFEE BREAK |

## SESSION 6

## Session Chair:

Adi Ben-Israel, Rutgers University, USA

## KEYNOTE SPEAKER

10:45-11:30 T.W. Anderson, Stanford University, USA Likelihood ratio tests in reduced rank regression and blocks of structural equations [W-3]

Yonghui Liu, Shanghai Finance University, CHINA Reduced rank regression and canonical correlation [W-23]

Muni S. Srivastava, University of Toronto, CANADA
12:00-12:30 Akaike Information Criterion for selecting components of mean vector in high-dimensional data with fewer observations [W-36]

Esa Ollila, Helsinki Institute of Technology, FINLAND
12:30-12:45

12:45-1:45 ICA of non-circular sources based on generalized uncorrelating transformation [W-28]

## SATURDAY JUNE 2 (CONT’D)

SESSION 7<br>Session Chair:<br>Peter Loly, University of Manitoba, Canada

Shuangzhe Liu, University of Canberra, AUSTRALIA

1:45-2:15

2:15-2:45

2:45-3:15

3:15-3:45

3:45-4:00

4:00-4:15

4:15-4:30

4:30-5:00

6:30--

On extensions of a Styan inequality involving the Khatri-Rao product [W-22]
(Dedicated to George P. H. Styan on the occasion of his $70^{\text {th }}$ birthday)
Frank J. Hall, Georgia State University, USA
Interlacing results on matrices associated with graphs [W-15]
Serge Provost, The University of Western Ontario, CANADA
On the inversion of certain moment matrices [W-29]
Yuejiao Cindy Fu, York University, CANADA
Testing homogeneity in a mixture of von Mises distributions with a structural parameter [W-12]

COFFEE BREAK

## SESSION 8

## Session Chair:

Hans Joachim Werner, International Organizing Committee, IWMS
Universität Bonn, GERMANY

Lihua An, University of Windsor, CANADA

BANQUET, HILTON HOTEL
George P. H. Styan, McGill University, CANADA The philatelic magic squares tourist [W-38]

PROGRAM

## SUNDAY JUNE 3

## SESSION 9

Session Chair:

Philip V. Bertrand, Consultant Statistician, Solihull, England, UK

## KEYNOTE SPEAKER

| 8:30-9:15 | Adi Ben-Israel, Rutgers University, USA <br> Probabilistic clustering [W-5] |
| :--- | :--- |
| 9:15-9:45 | Edit Gombay, University of Calgary, CANADA <br> Change detection in autoregressive time series [W-13] |
| $9: 45-10: 15$ | Yogendra P. Chaubey, Concordia University, CANADA <br> Estimation of distinct elements of a covariance matrix: <br> MINQUE and MINQE [W-7] |
| 10:15-10:45 | Syed Kirmani, University of Northern lowa, USA <br> Some aspects of multivariate quality control [W-21] |
| $10: 45-11: 00$ | COFFEE BREAK |

## SESSION 10

Session Chair:
Augustyn Markiewicz, International Organizing Committee, IWMS
Agricultural University of Poznan, POLAND

Philip V. Bertrand, Consultant Statistician, Solihull, ENGLAND, UK All about statistical quirks [W-6]

Yoshio Takane, McGill University, CANADA
On ridge operators [W-39]
Pierre Druilhet, CREST-ENSAI, Bruz, FRANCE
12:00-12:30 A POD estimator based on the jumps of some bordered matrices inertia [W-11]

12:30-1:30

## SUNDAY JUNE 3 (CONT'D)

## SESSION 11

Session Chair:
Kimmo Vehkalahti, University of Helsinki, FINLAND

1:30-2:00

2:00:2:30

2:30-3:00

3:00-3:30

3:30-3:45

3:45-4:15

4:15-4:45

4:45-5:15

5:15--

## SESSION 12

Session Chair:
Myron Hlynka, Local Organizing Committee, IWMS University of Windsor, CANADA

Jaakko Nevalainen, University of Tampere, FINLAND

## CLOSING REMARKS

Simo Puntanen - Chair, International Organizing Committee, IWMS'08-Portugal
Drawing of Door prizes - must be present to win

| $\begin{gathered} \text { Session } \\ \# \end{gathered}$ | day | chair surname | talk time length | start time of talk | speaker name | title | abstract \# |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { WS- } \\ & 01 / 1 \end{aligned}$ | Friday, June 1 | Young | 60 | 8:00 |  | Registration |  |
| $\begin{gathered} \text { WS- } \\ 01 / 2 \end{gathered}$ | Friday, June 1 | Ahmed | 15 | 9:00 | Neil Gold | Provost and Vice-President, University of Windsor |  |
| $\begin{gathered} \text { WS- } \\ 01 / 3 \end{gathered}$ | Friday, June 1 | Styan | 45 | 9:15 | Peter D. Loly | Eigenvalues in the universe of matrix elements $1, \ldots, n^{2}$ | W-24 |
| $\begin{gathered} \text { WS- } \\ 01 / 4 \end{gathered}$ | Friday, June 1 | Styan | 30 | 10:00 | Götz Trenkler | On the Moore-Penrose inverse of magic squares | W-41 |
| $\begin{gathered} \text { WS- } \\ 01 / 5 \end{gathered}$ | Friday, June 1 | Styan | 30 | 10:30 | Kimmo Vehkalahti | Some comments on magic squares and Survo puzzles | W-43 |
| $\begin{gathered} \text { WS- } \\ 01 / 6 \end{gathered}$ | Friday, June 1 | Styan | 30 | 11:00 | Ka Lok Chu | Some comments on magic square matrices with three nonzero eigenvalues | W-08 |
| $\begin{gathered} \text { WS- } \\ 01 / 7 \end{gathered}$ | Friday, June 1 |  | 15 | 11:30--11:45 |  | COFFEE |  |
| $\begin{aligned} & \text { WS- } \\ & 02 / 1 \end{aligned}$ | Friday, June 1 | Hunter | 30 | 11:45 | Karl E. Gustafson | Operator trigonometry of Hotelling correlation, Frobenius condition, Penrose twistor | W-14 |
| $\begin{gathered} \text { WS- } \\ 02 / 2 \end{gathered}$ | Friday, June 1 | Hunter | 30 | 12:15 | Morteza Seddighin | Applications of antieigenvalue techniques in statistics | W-35 |
| $\begin{gathered} \text { WS- } \\ 02 / 3 \end{gathered}$ | Friday, June 1 | Hunter | 30 | 12:45 | Ravindra Khattree | Antieigenvalues and antieigenvectors in applied statistics | W-20 |
| $\begin{array}{\|c\|} \hline \text { WS- } \\ 02 / 4 \end{array}$ | Friday, June 1 |  | 60 | 1:15--2:15 |  | LUNCH |  |
| $\begin{aligned} & \text { WS- } \\ & 03 / 1 \end{aligned}$ | Friday, June 1 | Puntanen | 15 | 2:15 | George P. H. Styan | A philatelic excursion with Jeff Hunter in probability and matrix theory | W-37 |
| $\begin{gathered} \text { WS- } \\ 03 / 2 \end{gathered}$ | Friday, June 1 | Puntanen | 30 | 2:30 | Jeffrey J. Hunter | Coupling and mixing times in Markov chains | W-18 |
| $\begin{gathered} \text { WS- } \\ 03 / 3 \end{gathered}$ | Friday, June 1 | Puntanen | 30 | 3:00 | Stanley L. Sclove | Matric musings in statistical finance | W-34 |
| $\begin{array}{\|c\|} \hline \text { WS- } \\ 03 / 4 \end{array}$ | Friday, June 1 | Puntanen | 15 | 3:30 | Toulope Sajobi | A very simple Markov transition matrix | W-33 |
| $\begin{gathered} \text { WS- } \\ 03 / 5 \end{gathered}$ | Friday, June 1 | Puntanen | 15 | 3:45 | Myron Hlynka | Two types of retrial queue | W-16 |
| $\begin{gathered} \text { WS- } \\ 03 / 6 \end{gathered}$ | Friday, June 1 |  | 15 | 4:00--4:15 |  | COFFEE |  |
| $\begin{aligned} & \text { WS- } \\ & \text { 04/1 } \end{aligned}$ | Friday, June 1 | Baksalary | 30 | 4:15 | Yongge Tian | Sum decompositions of weighted least-squares estimators under a general linear model | W-40 |
| $\begin{gathered} \text { WS- } \\ 04 / 2 \end{gathered}$ | Friday, June 1 | Baksalary | 30 | 4:45 | Jarkko M. Isotalo | Linear sufficiency and completeness in the partitioned linear model | W-19 |
| $\begin{gathered} \text { WS- } \\ 04 / 3 \end{gathered}$ | Friday, June 1 | Baksalary | 15 | 5:15--5:30 | Simo Puntanen | Effect of adding regressors on the equality of the OLSE and BLUE | W-30 |


| Session <br> $\#$ | day | chair surname | talk time <br> length | start time of talk | speaker name | (itle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WS- <br> $05 / 1$ | Saturday, <br> June 2 | Trenkler | 30 | $8: 30$ | Hans Joachim <br> Werner | On partitioned projectors |


| Session \# | day | chair surname | talk time length | start time of talk | speaker name | title | abstract \# |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { WS- } \\ & 09 / 1 \end{aligned}$ | Sunday, June 3 | Bertrand | 45 | 8:30 | Adi Ben-Israel | Probabilistic clustering | W-05 |
| $\begin{gathered} \text { WS- } \\ 09 / 2 \end{gathered}$ | Sunday, June 3 | Bertrand | 30 | 9:15 | Edit Gombay | Change detection in autoregressive time series | W-13 |
| $\begin{gathered} \text { WS- } \\ \text { 09/3 } \end{gathered}$ | Sunday, June 3 | Bertrand | 30 | 9:45 | Yogendra P. Chaubey | Estimation of distinct elements of a covariance matrix: MINQUE and MINQE | W-07 |
| $\begin{gathered} \text { WS- } \\ 09 / 4 \end{gathered}$ | Sunday, June 3 | Bertrand | 30 | 10:15 | S. Kirmani | Some aspects of multivariate quality control | W-21 |
| $\begin{gathered} \text { WS- } \\ 09 / 5 \end{gathered}$ | Sunday, June 3 |  | 15 | 10:45--11:00 |  | COFFEE |  |
| $\begin{aligned} & \text { WS- } \\ & 10 / 1 \end{aligned}$ | Sunday, June 3 | Markiewicz | 30 | 11:00 | Philip V. Bertrand | All about statistical quirks | W-06 |
| $\begin{gathered} \text { WS- } \\ 10 / 2 \end{gathered}$ | Sunday, June 3 | Markiewicz | 30 | 11:30 | Yoshio Takane | On ridge operators | W-39 |
| $\begin{gathered} \text { WS- } \\ 10 / 3 \end{gathered}$ | Sunday, June 3 | Markiewicz | 30 | 12:00 | Pierre Druilhet | A POD estimator based on the jumps of some bordered matrices inertia | W-11 |
| $\begin{gathered} \text { WS- } \\ 10 / 4 \end{gathered}$ | Sunday, June 3 |  | 60 | 12:30--1:30 |  | LUNCH |  |
| $\begin{aligned} & \text { WS- } \\ & 11 / 1 \end{aligned}$ | Sunday, June 3 | Vehkalahti | 30 | 1:30 | Vera de Jesus | Binary operation on prime basis factorials | W-10 |
| $\begin{aligned} & \text { WS- } \\ & 11 / 2 \end{aligned}$ | Sunday, June 3 | Vehkalahti | 30 | 2:00 | Nizam Uddin | E-optimal block designs for three treatments with conditional autonormal error process | W-42 |
| $\begin{gathered} \text { WS- } \\ 11 / 3 \end{gathered}$ | Sunday, June 3 | Vehkalahti | 30 | 2:30 | Augustyn Markiewicz | Design optimality conditions in multivariate linear models | W-25 |
| $\begin{gathered} \text { WS- } \\ 11 / 4 \end{gathered}$ | Sunday, June 3 | Vehkalahti | 30 | 3:00 | Mohamed <br> Amezziane | Kernel estimation and bandwidth selection in multivariate function estimation | W-01 |
| $\begin{gathered} \text { WS- } \\ 11 / 5 \end{gathered}$ | Sunday, June 3 |  | 15 | 3:30--3:45 |  | COFFEE |  |
| $\begin{aligned} & \text { WS- } \\ & 12 / 1 \end{aligned}$ | Sunday, June 3 | Hlynka | 30 | 3:45 | Jaakko Nevalainen | Nonparametric methods for multivariate location problems with independent and cluster-correlated observations | W-26 |
| $\begin{gathered} \text { WS- } \\ 12 / 2 \end{gathered}$ | Sunday, June 3 | Hlynka | 30 | 4:15 | Hannu Oja | Multivariate data analysis based on two scatter matrices | W-27 |
| $\begin{gathered} \text { WS- } \\ 12 / 3 \end{gathered}$ | Sunday, June 3 | Hlynka | 30 | 4:45--5:15 | M. Hossein Rahbar | A nonparametric test for equality of several survival means | W-31 |
| $\begin{aligned} & \text { WS- } \\ & 12 / 4 \end{aligned}$ | Sunday, June 3 | Ahmed | 15 | 5:15 | Simo Puntanen | IWMS17-Tomar: 23--26 July 2008 www.ipt.pt/iwms08 |  |

# Abstracts 

## [W-1] Kernel estimation and bandwidth

selection in multivariate function estimation
Mohamed Amezziane, De Paul University, USA
Results from matrix algebra and matrix calculus are used to minimize local and global $L_{2}$ criteria of kernel estimates of multivariate density and distribution functions. Under different matrix structures, optimal bandwidth matrices are derived and their estimators are shown to possess good asymptotic properties. [Joint work with Ibrahim A. Ahmad]

## [W-2] Shrinkage estimation of the variance <br> components for meta-analysis with random effects

Lihua An, University of Windsor, Canada
In this communication, we deal with the estimation of the variance components in meta-analysis with random effects. James-Stein type estimators for the random effect variance are proposed and their risk is simulated and compared to some existing estimators. The simulation study shows that our shrinkage estimators outperform the base estimator. [Joint work with S. Ejaz Ahmed]
[W-3] Likelihood ratio tests in reduced rank regression and blocks of structural equations
T. W. Anderson, Stanford University, USA

When the rank of a multivariate regression matrix is restricted, the matrix satisfies a set of linear restrictions. The rank of the restriction matrix is complementary to the rank of the regression matrix. Likelihood ratio tests of null hypotheses of a specified regression matrix and of a specified restriction matrix are studied. The powers of the tests are improved by limiting the alternative hypotheses to identified models. Applications to econometric problems exemplify the procedures.

## [W-4] On two representations of projectors <br> Oskar Maria Baksalary, Adam Mickiewicz University, Poland

Two representations of projectors on a finite dimensional vector space (i.e., idempotent matrices) as partitioned matrices are explored. The first of them is based on the known fact that a given square matrix is a projector if and only if it is expressible as the Moore-Penrose inverse of the product of two orthogonal projectors (i.e., Hermitian idempotent matrices). The idea behind the second representation refers to the fact that a given square matrix is an orthogonal projector if and only if it is unitarily similar to a direct sum of the identity matrix (of order determined by the rank of the projector) and zero matrix. The usefulness of both representations is demonstrated by establishing several new results as well as reestablishing the ones already available in the literature. [Joint work with Götz Trenkler]

## [W-5] Probabilistic clustering

## Adi Ben-Israel, Rutgers University, USA

We report on a new (iterative, batch) method of probabilistic (soft) clustering that is proving fast and accurate. The method uses cluster memberships that depend on distances from cluster centers, and on the cluster sizes. The cluster sizes are known in some applications (e.g., capacitated multi-facility location problems), and unknowns to be estimated in other applications (e.g., estimation of parameters in mixtures of distributions.) The method is based on the Joint Distance Function (JDF), a weighted harmonic mean of the distances in question, that approximates the data in its lowest contours. The JDF evolves during the iterations, and the cluster centers are updated as the stationary points of the JDF. [Joint work with Cem Iyigun]

[W-6] All about statistical quirks<br>Philip V. Bertrand,<br>Consultant Statistician, Solihull, England, UK

Nearly all data which have not been collected through a properly designed experiment will likely lead to incorrect conclusions. Either because the data have the property of being either a statistical quirk or an anti-quirk. To show this in high-dimensional situations requires matrix methods. Examples of such statistical quirks and anti-quirks are presented.

## [W-7] Estimation of distinct elements of a covariance matrix: MINQUE and MINQE <br> Yogendra P. ChaUbey, Concordia University, Canada

The method of MINQUE (Minimum Norm Quadratic Unbiased Estimation), originally proposed [C. R. Rao (1970)] for estimating heteroscedastic covariance matrix of a linear model and later generalized in a series of papers [C. R. Rao (1971, 1972)] for variance and covariance components. In some situations it may produce negative values for estimating non-negative variance components. For this reason, P.S.R.S. Rao and Chaubey (1978) proposed some modifications. Chaubey (1977) [see also P.S.R.S. Rao and Chaubey (1978)] showed how this method can be adapted for estimating the distinct elements of a variance-covariance matrix in a covariance-components model. This extension is straightforward when no a priori guess is incorporated in the estimation process. However, for the case when an a priori guess about distinct elements is used, in general, we may need to consider a different minimization problem, whose solution is provided in this paper. It is shown that for the particular case of the intra-class correlation model, the original solution holds with slight modification.
[W-8] Some comments on magic square matrices with three nonzero eigenvalues

## Ka Lok Chu, Dawson College, Canada

All 880 four-by-four classic magic square matrices are studied in detail. The matrix results may be different if one rotates, transposes or flips the matrices. Eight different magic square matrices can be constructed from each classic magic square matrix, but they can be categorized into two main groups. Some numerical computations will be presented using MATLAB. In addition, we will present a closed-form formula for the odd powers of certain magic square matrices with three nonzero eigenvalues. [Joint work with George P. H. Styan]

## [W-9] Testing for structure in covariance matrices

## Carlos Coelho, New University of Lisbon, Portugal

The advantage of the use of conditionally independent tests in building near-exact distributions for test statistics is shown. We show how several rather elaborate structures for covariance matrices may be tested by decomposing the null hypotheses under study in a number of 'partial' hypotheses which are conditionally independent. Using this technique we are able not only to construct quite easily the overall likelihood ratio test statistics but also to obtain, from the decomposition of the characteristic functions of the statistics used to test the 'partial' hypotheses, several near-exact distributions for such overall test statistics.

These distributions are of great importance given the intractability of the exact distributions and the non-existence of asymptotic distributions for most cases. The tests studied are the tests of multi-sample block-scalar sphericity and multi-sample block-matrix sphericity and their particular cases. As partial tests we use the test for independence
of several sets of variates, the test of equality of several covariance matrices and the sphericity test. [Joint work with Filipe J. Marques]

## [W-10] Binary operation on prime basis factorials Vera de Jesus, New University of Lisbon, Portugal

Binary operations and commutative Jordan algebras may be used to define product models, in which the treatments are the combination of those in the initial models, and nested models, in which each treatment of a model nests all the treatments of another model. This technique is now applied to prime basis factorials. The notion of a model strictly associated to a commutative Jordan algebra is introduced and applied to prime basis factorials. [Joint work with João Tiao Mexia \& Sandra Oliveira]
[W-11] A POD estimator based on the
jumps of some bordered matrices inertia

## Pierre Druilhet, CREST-ENSAI, Bruz, France

Biased regression is an alternative to ordinary least squares (OLS) regression when explanatory variables are highly correlated in order to improve the mean squared error (MSE). Among biased estimators, projected-onto-directions (POD) estimators are obtained by projecting the OLS estimator onto some directions. These estimators achieve the best OLS fit to the data over estimators constrained to belong to the subspace spanned by these particular directions. Principal component regression (PCR) estimators and partial least squares (PLS) estimators are examples of POD estimators. In a previous paper, we have shown that the PLS directions come from the signal-to-noise ratio (SNR). In this paper, we propose a sequence of new POD estimators whose directions are obtained from the jumps of some bordered matrices' inertia. These directions appear to be the eigenvectors of the Hessian matrix of the SNR. We show that these new estimators shrink uniformly on the subspace spanned by their directions with a shrinkage factor belonging to $[0,1]$. The number of directions and then the estimator can be chosen from these shrinkage factors. [Joint work with Alain Mom]
[W-12] Testing homogeneity in a mixture of von Mises distributions with a structural parameter

## Yuejiao Cindy Fu, York University, Canada

Testing homogeneity has always been an important and difficult research problem in finite mixture models, especially in the presence of a structural parameter. The von Mises distribution and its mixture are widely used for circular data arising naturally from many sciences. The modified likelihood ratio test has been successfully applied for the homogeneity test in a variety of mixture models. We propose the use of the modified likelihood ratio test and the iterative modified likelihood ratio test in general two-component von Mises mixture with a structural parameter. Two accuracy enhancing methods are developed. The limiting distributions of the resulting test statistics are derived. Simulations show that the test statistics have accurate type I errors and adequate power. A real data example is also provided. [Joint work with Jiahua Chen \& Pengfei Li]

## [W-13] Change detection in autoregressive time series Edit Gombay, University of Calgary, Canada

Autoregressive time series models of order $p$ have $p+2$ parameters, the mean, the variance of the white noise and the $p$ autoregressive parameters. Change in any of these over time is a sign of disturbance that is important to detect. The methods of this paper can test for change in any one of these $p+2$ parameters, or in any collection of them. They are available in forms that make one-sided tests possible; furthermore, they can be used to test for temporary change. The test statistics are based on the efficient score vector. The large sample properties of the change-point estimator are also explored.
[W-14] Operator trigonometry of Hotelling correlation, Frobenius condition, Penrose twistor
Karl E. Gustafson, University of Colorado, USA
I will first quickly review the essentials of operator trigonometry, which I created 40 years ago. Then I will quickly recall its first application to matrix statistics, which I initiated 8 years ago, and reported to IWMS14 in Auckland 2 years ago. Then I will quickly present 3 new applications of the operator trigonometry to 3 diverse mathematical domains: matrix statistics, numerical analysis, theoretical physics.

## [W-15] Interlacing results <br> on matrices associated with graphs <br> Frank J. Hall, Georgia State University, USA

Given a graph $G$, the adjacency matrix, the standard Laplacian, and the normalized Laplacian have been studied intensively. In this talk, interlacing inequalities are given for each of these three matrices under the two operations of removing an edge or a vertex from $G$. Examples are given to show that the inequalities are the best possible of their type. In addition, an interlacing result is proven for the adjacency matrix when two vertices of $G$ are contracted. [Joint work with Kinnari Patel \& Michael Stewart]

## [W-16] Two types of retrial queue <br> Myron Hlynka, University of Windsor, Canada

We present a quasi birth-and-death model for retrial queues. The model includes retrial customers which behave independently of each other and retrial customers which must line up to attempt to reenter the system.
[W-17] Shrinkage, pretest and $L_{1}$ regularization-type estimators in generalized linear models
Md. Shakhawat Hossain, University of Windsor, Canada

We consider the estimation problem for the generalized linear models which may have a large collection of potential predictor variables and some of them may not have influence on the response of interest. In this situation, selecting the statistical model is always a vital component in estimation. The objective is to provide natural adaptive estimators that are free of subjective choices. In the context of two competing models (full and reduced), we demonstrate the relative performances of James and Stein (J-S) type shrinkage and pre-test estimators based on the asymptotic analysis of quadratic risk functions and it is found that the J-S type estimator outperforms the maximum likelihood estimator uniformly.

On the other hand, the pretest estimator dominates the maximum likelihood estimator only in a small part of the parameter space, which is consistent with the theory. We also consider an $L_{1}$ regularization type estimator for generalized linear models and give a Monte Carlo simulation comparison of shrinkage, pretest and the $L_{1}$ regularization type estimators. The comparison shows that the shrinkage method performs better than the $L_{1}$ type estimation method when the dimension of the restricted parameter space is large. [Joint work with S. Ejaz Ahmed]

## [W-18] Coupling and mixing times in Markov chains Jeffrey J. Hunter, Massey University, Albany Campus, New Zealand

The properties of the time to coupling and the time to mixing in Markov chains are explored. In particular, the expected time to coupling is compared with the expected time to mixing (as introduced by the author in "Mixing times with applications to perturbed Markov chains" [Linear Algebra and its Applications, 417, 108-123 (2006)]. The two-state cases and three-state cases are examined in detail.
[W-19] Linear sufficiency and completeness in the partitioned linear model

## Jarkko M. Isotalo, University of Tampere, Finland

We consider the estimation of the subvector $\beta_{1}$ of the unknown parameter vector $\beta=\left(\beta_{1}^{\prime}, \beta_{2}^{\prime}\right)^{\prime}$ in the partitioned linear model. In particular, we consider linear sufficiency and linear completeness in the context of estimating $\beta_{1}$. We give new characterizations for linear sufficiency, and define and characterize linear completeness in a case of estimation of $\beta_{1}$. We also introduce a predictive approach for obtaining the best linear unbiased estimator of $\beta_{1}$, and subsequently, we give the linear analogues of the Rao-Blackwell and Lehmann-Scheffé Theorems in the context of estimating $\beta_{1}$. [Joint work with Simo Puntanen]

## [W-20] Antieigenvalues and <br> antieigenvectors in applied statistics

## Ravindra Khattree, Oakland University, USA

Antieigenvalues and antieigenvectors have been used in statistical work for several years although they were not characterized by these nomenclatures. The present talk provides a brief survey of statistical work where these quantities arise naturally. The emphasis is on their applications in regression modeling and multivariate analyses.

## [W-21] Some aspects of multivariate quality control <br> Syed Kirmani, University of Northern Iowa, USA

Our objective is two-fold: to give a quick survey of the problems in multivariate quality control, and to introduce a new approach to mutivariate process capability. The proposed approach to modeling and assessment of process capability is based on the notion of Löwner ordering. A statistic is developed as a measure of potential process capability and bootstrapping is proposed to assess its significance.

## [W-22] On extensions of a Styan inequality <br> involving the Khatri-Rao product <br> Shuangzhe Liu, University of Canberra, Australia

Styan (1973) established an inequality involving the Hadamard product using statistical reasoning in the context of multivariate analysis. Inequalities are studied to involve the Khatri-Rao product in the positive semidefinite matrix and the symmetric nonsingular matrix cases. The inequalities with conditions for them to become an equality are given based on a Schur complement method. Related inequalities in the positive definite matrix case are also discussed. [This paper is dedicated to George P. H. Styan on the occasion of his 70th birthday.]

## [W-23] Reduced rank regression and canonical correlation <br> Yonghui Liu, Shanghai University <br> of Finance and Economics, China

Reduced rank regression was proposed by Anderson (1951) and studied further by many authors. The model has been widely applied in Signal Processing, Biometrics, etc. In 1981, Davies \& Tso gave procedures of reduced rank regression through the singular value decomposition and Eckart-Young theorem; Stoica \& Viberg (1996) studied the reduced rank regression problem in a maximum likelihood sense. Recently, Elden \& Savas (2005) obtained a new numerical procedure in terms of the $L U$ decomposition and the singular value decomposition. By applying the canonical correlation decomposition of matrix pairs, in this paper, we examine the maximum likelihood estimation and the least squares estimation in a reduced rank regression model and propose an alternative numerical procedure. [Joint work with Yongge Tian]
[W-24] Eigenvalues in the
universe of matrix elements $1, \ldots, n^{2}$.

## Peter D. Loly, University of Manitoba, Canada

Semi-magic squares have identical row and column sums, an $n$-agonal eigenvector and line sum eigenvalue (also termed doubly stochastic). The addition of main diagonals with the same sum defines magic squares. Finite sets of normal magic squares of order $n$ are found for sequential integer matrix elements, usually $1, \ldots, n^{2}$. Moreover the antipodal pair sum constraint gives regular or associative magic squares, while parallel diagonals with the same line sum under tiling or periodic boundary conditions give pandiagonal squares. Mattingly (2000) showed that even order regular magic squares have odd algebraic multiplicity $(m)$ of eigenvalues and are thus singular. For fourth order regular squares we find 8 cases with $m=3$. This group of 48 squares is completed by 40 squares with $m=1$. A surprise finding for pandiagonal squares is that they alternate between $m=1$ and $m=3$ on matrix rotation. Mattingly also proved that odd order regular magic squares have even multiplicity, $m=0,2,4, \ldots$

Singular value decomposition of the 4 th order set of 880 magic squares falls into 5 subsets. Analyzing results from exact backtracking calculations we find 652 singular 5 th order regular squares with $m=2$, and four with $m=4$. There are also 20,604 singular seventh order ultramagic (regular and pandiagonal) squares with $m=1$, demonstrating singularity with the co-existence of regularity and pandiagonality. Our study makes use of parameterizations of magic squares for low orders, including factorization of the linesum eigenvalue from the characteristic polynomial. See also www.wolframscience.com/conference
/2006/presentations/materials/loly.pdf
[Joint work with Ian D. Cameron, Daniel Schindel \& Walter Trump.]

## [W-25] Design optimality conditions

in multivariate linear models

## Augustyn Markiewicz, <br> Agricultural University of Poznań, Poland

Optimality of designs under multivariate normal models is studied. It is assumed that the error dispersion matrix is known or partially unknown. In the case of known dispersion matrix optimality is considered with respect to the information matrix while in the case of partially unknown dispersion matrix optimality is considered with respect to the precision matrix in maximum likelihood estimation. In both cases, depending on model assumption, design optimality conditions are derived.

## [W-26] Nonparametric methods for

 multivariate location problems with independent and cluster-correlated observationsJaakko Nevalainen, University of Tampere, Finland
We have developed efficient nonparametric multivariate methods for independent and identically distributed (i.i.d.) observations and for cluster correlated observations. The talk deals with spatial sign and spatial rank methods for the one-sample multivariate location problem with i.i.d. and cluster correlated observations. Weighted generalizations are also considered in this framework. The statistical properties of the procedures are carefully investigated. It is shown that the spatial sign and rank methods have competitive efficiency properties relative to the classical techniques, particularly if the data is heavy-tailed or clustered. The efficiencies and other statistical properties of the methods can be improved even further by weighting them in an optimal way. Furthermore, the methods are valid even without moment assumptions, and are efficient when the underlying distribution deviates from normality or in the presence of outliers. [Joint work with Denis Larocque, Hannu Oja \& Riina Haataja]
[W-27] Multivariate data analysis
based on two scatter matrices

## Hannu OJA, University of Tampere, Finland

The regular mean vector and covariance matrix are popular tools for describing the location and scatter of a multivariate data cloud. Weighted mean vectors and covariance matrices, M and S estimators, for example, yield typically less efficient but more robust estimates of the symmetry center and covariance matrix in the multivariate normal and elliptic case.
In this talk we show how two different scatter matrices can be used together to analyze multivariate data: They give an invariant coordinate system (ICS) and then the transformation-retransformation (TR) technique can be used to build invariant/equivariant multivariate inference methods. Two scatter matrices with the so-called independence property can be used to find independent components in the independent component analysis (ICA). Several examples are given to illustrate the approach. [The talk is based on joint work and numerous discussions with Frank Critchley, Jan Eriksson, Anna-Liisa Kankainen, Visa Koivunen, Klaus Nordhausen, Esa Ollila, Davy Paindaveine, Seija Sirkiä, Sara Taskinen \& David Tyler (among others).]
[W-28] ICA of non-circular sources based on generalized uncorrelating transformation

## Esa Ollila, Helsinki Institute of Technology, Finland

In this paper, we show that a novel data transformation, called generalized uncorrelating transformation (GUT), is a separating matrix estimator for complex-valued independent component analysis (ICA) when at most one source random variable possess circularly symmetric distribution. GUT can be viewed as an extension of the whitening transformation for complex random vectors based upon generalized estimators of covariance and pseudo-covariance matrix, called the scatter matrix and spatial pseudo-scatter matrix, respectively. Our approach yields a large family of estimators of the separating matrix, which, depending on the choices of the scatter and spatial pseudo-scatter matrix, can have largely different statistical properties. Our approach is computationally among the most attractive ones as it avoids optimization tasks and is based solely on straigthforward matrix computations. Simulations and examples are used to confirm reliable performance of our method. [Joint work with Hyon-Jung Kim and Visa Koivunen]

## [W-29] On the inversion of certain moment matrices <br> Serge Provost, The University of Western Ontario, Canada

An explicit representation of the elements of the inverse of a certain patterned matrix involving the moments of some weight function is derived. More specifically, it is explained that, given any nonnegative weight function whose moments exist, one can generate a sequence of monic orthogonal polynomials by making use of a Hankel determinant, and that the inverse of the corresponding moment matrix can then be expressed in terms of the coefficients and orthogonality factors associated with those polynomials. Such matrix inverses are in fact eminently useful when it comes to approximating mathematically intractable probability density functions whose exact moments can nevertheless be evaluated. Several examples illustrate the results. [Joint work with Hyung-Tae Ha]

## [W-30] Effect of adding regressors <br> on the equality of the OLSE and BLUE <br> Simo Puntanen, University of Tampere, Finland

We consider the estimation of regression coefficients in a partitioned linear model, briefly denoted as $M_{12}=\left\{y, X_{1} \beta_{1}+X_{2} \beta_{2}, V\right\}$. We call $M_{12}$ a full model, and correspondingly, $M_{1}=\left\{y, X_{1} \beta_{1}, V\right\}$ a
small model. We introduce a necessary and sufficient condition for the equality between the ordinary least squares estimator (OLSE) of $\beta_{1}$ and the best linear unbiased estimator (BLUE) of $\beta_{1}$ under the full model $M_{12}$ assuming that they are equal under the small model $M_{1}$. [Joint work with Jarkko Isotalo \& George P. H. Styan.]
[W-31] A nonparametric test for
equality of several survival means
M. Hossein Rahbar, Michigan State University, USA

Statistical procedures for assessment of treatments often involve complexities due to incompleteness of the data. Here we propose a new nonparametric method for testing the homogeneity of survival means based on randomly right-censored data. We develop a new test statistic based on Kaplan-Meier means. We derive asymptotic properties of this test statistic.

Through simulations we compute and compare the power of this new procedure with that of the log-rank, Wilcoxon, and the Cox models. Our results indicate that the performance of some of these estimation procedures depends on the level of censoring and appropriateness of the underlying assumptions for each procedure. When the assumptions of log-rank test and the Cox model are met, these procedures are more powerful than the Wilcoxon and our proposed test. However, when the objective is testing homogeneity of survival means rather than survival curves, our test statistic and the Wilcoxon test seem to have some advantages. [Joint work with Sangchoon Jeon \& Joseph C. Gardiner]

## [W-32] A result on idempotent matrices

## K. P. S. Bhaskara RAO, Indiana State University, USA

We give a new proof of the result that every real square singular matrix is a product of idempotent matrices. We shall also examine the corresponding result for matrices over principal ideal domains. [Joint work with Surekha Rao]

## [W-33] A very simple Markov transition matrix <br> Toulope Sajobi, University of Windsor, Canada

A very simple Markov transition matrix is presented with a steady state vector involving every second Fibonacci number. We look at a variety of extensions and implications of this initial model.
[W-34] Matric musings in statistical finance

## Stanley L. Sclove, University of Illinois at Chicago, USA

According to the classical Geometric Brownian Motion model for stock prices, the differences of the log price (the continuous rates of return) are independent and identically distributed according to a Normal distribution. The model is a good starting point but has inadequacies, especially due to the changing volatilities of stock rates of return. In particular, the covariance matrix of stocks' rates of return is not stationary. Remedies for this, including GARCH and hidden Markov models, are discussed. Estimation of the covariance matrices in these and other models is explored. Portfolio optimization in the context of these models is discussed.
[W-35] Applications of
antieigenvalue techniques in statistics

## Morteza Seddighin, Indiana University East, USA

In a 2002 paper, Karl Gustafson outlined the similarities between the Antieigenvalue Theory he founded and several finite dimensional matrix optimization theorems for positive matrices arising in statistics. In this paper, we will show how the techniques that the author and Karl Gustafson have used for computation of Antieigenvalues can also be applied to prove and generalize those matrix optimization theorems aris-
ing in statistics. We will primarily focus on two techniques which we have used in Antieigenvalue computations in recent years. These two techniques are a two-nonzero-component property for a certain class of functionals, and converting matrix optimization problems into a convex programming problem (minimizing a convex function on the numerical range of an operator). Indeed, these two techniques allow us to generalize some of the matrix optimization problems arising in statistics to non-positive infinite dimensional operators on a Hilbert space.
[W-36] Akaike Information Criterion for selecting components of mean vector in high-dimensional data with fewer observations
Muni S. SRIVASTAVA, University of Toronto, Canada
The Akaike Information Criterion (AIC) has been successfully used in model selection for large sample size $N$ and small number of parameters $p$. The case when $p$ is larger than $N$ has not been considered in the literature. We consider this case in this article in the context of finding the number of components of the mean vector that may be different from zero in one-sample multivariate analysis. Using simulation, it has been shown that the proposed AIC procedure performs well. [Joint work with T. Kubokawa]

## [W-37] A philatelic excursion with Jeff Hunter in probability and matrix theory <br> George P. H. Styan, McGill University, Canada

We present a philatelic excursion with Jeff Hunter, visiting some of his research topics. Specifically, we will present some facts about certain people whose work seems to have influenced Jeff in his scientific career; we illustrate our presentation with postage stamps that have been issued in honour of these people. Our main guide is the two-volume book by Jeffrey J. Hunter entitled Mathematical Techniques of Applied Probability (Academic Press, 1983).


One of the first entries in this two-volume book is "Bernoulli trial" (vol. 1, p. 10) named after Jacob Bernoulli I (1654-1705), who is famous for his Ars Conjectandi and his work on the law of large numbers. [Joint work with Götz Trenkler]
[W-38] The philatelic magic squares tourist George P. H. Styan, McGill University, Canada

We will visit China, Germany, India, Italy, Spain, and the USA, finding magic squares, starting with the Luoshu associated with Yu the Great.


We will identify associated postage stamps from Aitutaki/Cook Islands, Australia, British Indian Ocean Territory, China, Germany, Ghana, India, Maldives, Mongolia, Spain, and the USA.

## [W-39] On ridge operators

Yoshio TaKane, McGill University, Canada
Let $X$ be an $n \times p$ matrix, and define $\mathcal{R}_{X}(\lambda)=X\left(X^{\prime} X+\lambda P_{X^{\prime}}\right)^{-} X^{\prime}$, which we call the ridge operator, where $\lambda$ is a nonnegative constant (called the ridge parameter), and $P_{X}=X^{\prime}\left(X X^{\prime}\right)^{-} X$ is the orthogonal projector onto the row space of $X$. Various properties of $\mathcal{R}_{X}(\lambda)$ are discussed, including additive decompositions of this matrix similar to those of $P=\mathcal{R}_{X}(0)=X\left(X^{\prime} X\right)^{-} X^{\prime}$, orthogonal projector onto the column space of $X$. These properties and decompositions are useful, especially in the ridge estimation of reduced rank regression and multiple-set canonical correlation analyses. The ridge operator is further extended to a generalized ridge operator defined by $\mathcal{R}_{X}^{(L, V)}(\lambda)=X\left(X^{\prime} V X+\lambda L\right)^{-} X^{\prime}$, where $V$ is nonnegative definite and such that $\operatorname{rank}(V X)=\operatorname{rank}(X)$, and $L$ is nonnegative definite and such that $\operatorname{Sp}(X)=\operatorname{Sp}(L)$. The generalized ridge operator has similar properties as $\mathcal{R}_{X}(\lambda)$. [Joint work with Haruo Yanai]
[W-40] Sum decompositions of weighted
least-squares estimators under a general linear model
Yongge Tian, Shanghai University
of Finance and Economics, China
For the partitioned linear model $\mathcal{M}=\left\{y, X_{1} \beta_{1}+X_{2} \beta_{2}, \sigma^{2} \Sigma\right\}$, this paper investigates decompositions of the weighted least-squares estimator (WLSE) of $X_{1} \beta_{1}+X_{2} \beta_{2}$ under $\mathcal{M}$ as sums of the WLSEs under the two small models $\left\{y, X_{1} \beta_{1}, \sigma^{2} \Sigma\right\}$ and $\left\{y, X_{2} \beta_{2}, \sigma^{2} \Sigma\right\}$. Some consequences on the sum decomposition of the unique best unbiased linear estimator (BLUE) of $X_{1} \beta_{1}+X_{2} \beta_{2}$ under $\mathcal{M}$ are also given. [Joint work with Yoshio Takane]

## [W-41] On the Moore-Penrose inverse of magic squares Götz Trenkler, Universität Dortmund

Starting from the famous $4 \times 4$ magic square appearing in Dürer's engraving Melencholia I, we consider the problem under which conditions the Moore-Penrose inverse of a magic square is magic again. By a magic square we mean a square matrix of real numbers where columns, rows and both diagonals add to the same constant. We also pay attention to semi-magic squares where the diagonal property does not necessarily hold. The main focus is on $3 \times 3$ and $4 \times 4$ squares, the latter case mainly exhibiting properties of so-called pandiagonal magic squares.
[W-42] E-optimal block designs for three treatments with conditional autonormal error process

## Nizam Uddin, University of Central Florida, USA

This paper deals with $E$-optimal incomplete block designs in blocks of size three when observations within each block are correlated according to a conditional autonormal process. The optimality problem is addressed within various subclasses of connected designs using generalized least squares estimation of treatment contrasts in block effects model. The proposed $E$-optimal designs are obtained by adding disjoint blocks to a class of neighbor balanced block designs.
[W-43] Some comments on
magic squares and Survo puzzles
Kimmo Vehkalahti, University of Helsinki, Finland
Following the work of George P. H. Styan and others, we study the 640 classic $4 \times 4$ magic squares of Dudeney Types I-VI having rank equal to three. Focusing on the so-called sweets-and-sours, i.e., the regular and flipped forms of the matrices, we demonstrate the computations and visualizations of the real and complex eigenvalues, principal minors, and other results using Seppo Mustonen's Survo and its matrix interpreter, macro language, and graphics.

Finally, we note that the magic squares can be seen as special cases of Mustonen's Survo puzzles, which offer new challenges for Sudoku or Kakuro players, but also give rise to interesting research questions, e.g., in combinatorics and linear algebra.
[W-44] Norms of Toeplitz matrices
and their asymptotic behaviour
Jani A. Virtanen, University of Helsinki, Finland
Many questions regarding finite Toeplitz matrices can be easily answered by mathematical software if the dimension is reasonably small. However there are situations in which one needs to know what happens when the dimension gets very large, e.g., many applications in statistical physics require asymptotic formulas. We deal with questions arising in asymptotic linear algebra of Toeplitz matrices, and in particular concentrate on the behavior of their norms as the dimension goes to infinity.

## [W-45] On partitioned projectors <br> Hans Joachim Werner, Universität Bonn, Germany

Projectors play an important role in many fields such as linear algebra, probability theory and statistics. This talk focuses on some results on the ranks and Schur complements of certain kinds of symmetrically block-partitioned projectors.

## The 17th International Workshop on Matrices

 and Statistics will be held in TOMAR (Portugal), a XII century town, former headquarters of the Templars in Portugal. It has excellent conditions to receive you for this event.


