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Exercises: Some Solutions (October 3, 2012)

These exercises are supposed to be warm-up exercises—to get rid of the
possible rust in the reader’s matrix engine.
0.1 (Contingency table, 2× 2). Consider three frequency tables (contingency

tables) below. In each table the row variable is x.

(a) Write up the original data matrices and calculate the correlation
coefficients rxy, rxz and rxu.

(b) What happens if the location (cell) of the zero frequency changes
while other frequencies remain mutually equal?

(c) Explain why rxy = rxu even if the u-values 2 and 5 are replaced with
arbitrary a and b such that a < b.

y
0 1

x
0 1 1
1 0 1

z
0 1

0 2 2
1 0 2

u
2 5

0 1 1
1 0 1

• Solution to Ex. 0.1:

A = (x : y) =

0 0
0 1
1 1

 , B = (x : z) =


0 0
0 0
0 1
0 1
1 1
1 1

 , C = (x : u) =

0 2
0 5
5 5

 .

In all cases the correlation coefficient is 0.5. Recall that

rxy = SPxy√
SSx SSy

= sxy
sxsy

,

SSx =
n∑
i=1

(xi − x̄)2 =
n∑
i=1

x2
i − 1

n

( n∑
i=1

xi

)2
=

n∑
i=1

x2
i − nx̄2,

SPxy =
n∑
i=1

(xi − x̄)(yi − ȳ) =
n∑
i=1

xiyi − 1
n

( n∑
i=1

xi

)( n∑
i=1

yi

)
=

n∑
i=1

xiyi − nx̄ȳ .
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Note: In A the variables x and y have the same variances, in which case
the correlation coefficient and the slope β̂1 are identical:

β̂1 = SPxy
SSx

= sxy
s2
x

= rxy
sy
sx

= rxy, if sx = sy .

If the cell of the zero-frequency changes, then |rxy| remains the same but
the sign may change. In the following cases rxy = −0.5:

y
0 1

x
0 0 1
1 1 1

y
0 1

x
0 1 1
1 1 0

(c) We try to find to find real numbers α and β which have the property
ui = α+ βyi, i = 1, 2, 3, i.e.,

a = α+ β · 0, b = α+ β · 1 =⇒ α = a, β = b− a =⇒ ui = a+ (b− a)yi.

Because the u-values are obtained by a linear transformation ui = a+(b−a)yi,
where b− a > 0, we necessarily have rxu = rxy.

If the transformation were ui = c+ dyi, where d < 0, then rxu = −rxy. �

0.2. Prove the following results concerning two dichotomous variables whose
observed frequency table is given below.

vars(y) = 1
n− 1

γδ

n
= n

n− 1 ·
δ

n

(
1− δ

n

)
,

covs(x, y) = 1
n− 1

ad− bc
n

, cors(x, y) = ad− bc√
αβγδ

= r ,

χ2 = n(ad− bc)2

αβγδ
= nr2.

y

0 1 total
0 a b α

x
1 c d β

total γ δ n

• Solution to Ex. 0.2:

ȳ = δ

n
, x̄ = β

n
,

vars(y) = 1
n− 1

( n∑
i=1

y2
i − nȳ2

)
= 1
n− 1

(
δ − n δ

2

n2

)
= 1
n− 1 δ

(
1− δ

n

)
= n

n− 1
δ

n

(
1− δ

n

)
= n

n− 1
δγ

n2 ,

covs(x, y) = 1
n− 1

( n∑
i=1

xiyi − nx̄ȳ
)

= 1
n− 1

(
d− n β

n

δ

n

)
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= n

n− 1

( d
n
− β

n

δ

n

)
.

In view of

d

n
− β

n
· δ
n

= 1
n2 [nd− (c+ d)(b+ d)]

= 1
n2 [(a+ b+ c+ d)d− (cb+ cd+ db+ d2)]

= 1
n2 (ad− bc),

we get

covs(x, y) = n

n− 1
ad− bc
n2

= 1
n− 1

ad− bc
n

.

Note: According to (0.131) and (0.133), we can consider a data matrix
U = (u(1) : . . . : u(n))′ and define a discrete random vector u∗ with proba-
bility function

P(u∗ = u(i)) = 1
n , i = 1, . . . , n ,

i.e., every data point has the same probability to be the value of the random
vector u∗. Then

E(u∗) = ū , cov(u∗) = 1
nU′CU = n−1

n S .

Below in Exercise 0.3 the considerations are done for a 2-dimensional ran-
dom vector which is obtained from the frequency table above so that each
observation has the same probability 1/n. �

0.3. Let z =
( x
y

)
be a discrete 2-dimensional random vector which is ob-

tained from the frequency table in Exercise 0.2 so that each observation
has the same probability 1/n. Prove that then

E(y) = δ

n
, var(y) = δ

n

(
1− δ

n

)
, cov(x, y) = ad− bc

n2 , cor(x, y) = ad− bc√
αβγδ

.

• Solution to Ex. 0.3:

E(x) = µx = α

n
0 + β

n
1 = β

n
, E(y) = δ

n
,

var(x) = σ2
x = E(x2)− µ2

x

= α

n
02 + β

n
12 − β2

n2 = β

n

(
1− β

n

)
= β

n

α

n
,
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var(y) = δ

n

(
1− δ

n

)
= γ

n

δ

n
= γ

n

(
1− γ

n

)
,

cov(x, y) = σxy = E(xy)− µxµy

= d

n
− β

n
· δ
n

= 1
n2 [nd− (c+ d)(b+ d)]

= 1
n2 [(a+ b+ c+ d)d− (cb+ cd+ db+ d2)]

= 1
n2 (ad− bc) .

�

0.4 (Continued . . . ). Show that in terms of the probabilities:

var(y) = p·1p·2 ,

cov(x, y) = p11p22 − p12p21 ,

cor(x, y) = p11p22 − p12p21√
p·1p·2p1·p2·

= %xy .

y

0 1 total
0 p11 p12 p1·

x
1 p21 p22 p2·

total p·1 p·2 1

• Solution to Ex. 0.4:
All probabilities are obtained from the table of Exercise 0.2 by dividing

each figure by n. Hence

E(x) = β

n
= p2· , E(y) = δ

n
= p·2 ,

var(x) = β

n

(
1− β

n

)
= α

n

(
1− α

n

)
= p1·p2· ,

var(y) = δ

n

(
1− δ

n

)
= γ

n

(
1− γ

n

)
= p·1p·2 ,

cov(x, y) = d

n
− β

n
· δ
n

= p22 − p2·p·2

= ad− bc
n2

= p11p22 − p12p21 .

�
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0.5 (Continued . . . ). Confirm:

%xy = 0⇔ det
(
p11 p12
p21 p22

)
= det

(
a b
c d

)
= 0⇔ p11

p21
= p12
p22
⇔ a

c
= b

d
.

0.6 (Continued . . . ). Show, using (0.85) (p. 19), that the dichotomous ran-
dom variables x and y are statistically independent if and only if %xy = 0.
By the way, for interesting comments on 2× 2 tables, see Speed (2008b).

• Solution to Ex. 0.6:
The random variables x and y are statistically independent if and only if

P(x = i, y = j) = P(x = i) P(y = j) for all i = 0, 1, j = 0, 1 , (∗)

i.e.,
pij = pi·p·j for all i = 1, 2, j = 1, 2 . (1)

while x and y are uncorrelated if and only if cov(x, y) = p22− p2·p·2 = 0, i.e.,

p22 = p2·p·2 . (2)

Suppose that (2) holds, i.e., x and y are uncorrelated. Then (2) implies that
(1) holds for i = j = 2. Moreover, (2) implies

p21 = p2· − p22 = p2· − p2·p·2 = p2·(1− p·2) = p2·p·1 ,

p12 = p·2 − p22 = p·2 − p2·p·2 = p·2(1− p2·) = p·2p1· ,

p11 = p1· − p12 = p1· − p1·p·2 = p1·(1− p·2) = p1·p·1 .

Thus we have shown that (2) implies (1). Recall that statistical independence
implies that E(xy) = E(x) E(y) = µxµy and hence cov(x, y) = E(xy) −
µxµy = 0. �

0.7 (Continued, in a way . . . ). Consider dichotomous variables x and y whose
values are A1, A2 and B1, B2, respectively, and suppose we have n obser-
vations from these variables. Let us define new variables in the following
way:

x1 = 1 if x has value A1, and x1 = 0 otherwise,
x2 = 1 if x has value A2, and x2 = 0 otherwise,

and let y1 and y2 be defined in the corresponding way with respect to the
values B1 and B2. Denote the observed n × 4 data matrix as U = (x1 :
x2 : y1 : y2) = (X : Y). We are interested in the statistical dependence
of the variables x and y and hence we prepare the following frequency
table (contingency table):
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y

B1 B2 total
A1 f11 f12 r1

x
A2 f21 f22 r2

total c1 c2 n

Let eij denote the expected frequency (for the usual χ2-statistic for test-
ing the independence) of the cell (i, j) and

eij = ricj
n

, E = (e1 : e2) , F =
(
f11 f12
f21 f22

)
= (f1 : f2) ,

and c =
(
c1
c2

)
, r =

(
r1
r2

)
. We may assume that all elements of c and r are

nonzero. Confirm the following:

(a) cord(x1,x2) = −1, rank(X : Y) ≤ 3, rank[cord(X : Y)] ≤ 2,
(b) X′1n = r, Y′1n = c, X′X = diag(r) = Dr, Y′Y = diag(c) = Dc,
(c) X′Y = F, E = rc′/n = X′1n1′nY/n = X′JY.
(d) The columns of X′Y(Y′Y)−1 represent the conditional relative fre-

quencies (distributions) of x.
(e) F−E = X′CY, where C is the centering matrix, and hence 1

n−1 (F−
E) is the sample (cross)covariance matrix between the x- and y-
variables.

• Solution to Ex. 0.7:

(a) Suppose that the observations are arranged so that

X = (x1 : x2) =



1 0
...

...
1 0
0 1
...

...
0 1


=
(

1r1 0
0 1r2

)
∈ Rn×2.

Then obviously cord(x1,x2) = −1 and similarly cord(y1,y2) = −1.
Moreover,

rk(X : Y) = rk(X) + rk(Y)− dim C (X) ∩ C (Y) ≤ 2 + 2− 1 = 3 ,

because X12 = 1n = Y12 and hence dim C (X) ∩ C (Y) ≥ 1.
Denote cord(x1,y1) = a. Then, in view of y2 = −y1 + 1, we have
cord(x1,y2) = −a, and in view of x2 = −x1 + 1, we have cord(x2,y1) =
−a, and similarly cord(x2,y2) = a, and so we can conclude that
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cord(X : Y)] =


1 −1 a −a
−1 1 −a a
a −a 1 −1
−a a −1 1

 := R ,

rank(R) = rank


1 a
−1 −a
a 1
−a −1

 ≤ 2 .

(b) X′1n =
(

1′r1
0′

0′ 1′r2

)
1n =

(
r1
r2

)
= r , Y′1n =

(
c1
c2

)
= c ,

X′X =
(
r1 0
0 r2

)
= diag(r) = Dr, Y′Y = diag(c) = Dc ,

(c) frequency table: X′Y = F,
theoretical frequencies: E = rc′/n = X′1n1′nY/n = X′JY.

(d) The columns of

X′Y(Y′Y)−1 = FD−1
r =

(
f11/c1 f12/c2
f21/c1 f22/c2

)
, where ci = #(y = Bi),

represent the conditional relative frequencies (distributions) of x.
(e) F−E = X′CY, where C is the centering matrix, and hence 1

n−1 (F−E)
is the sample (cross)covariance matrix between the x- and y-variables.

�

0.8 (Continued . . . ).

(a) Show that X′CY, X′CX, and Y′CY are double-centered; An×p is
said to be double-centered if A1p = 0n and A′1n = 0p.

(b) Prove that 1n ∈ C (X)∩C (Y) and that it is possible that dim C (X)∩
C (Y) > 1.

(c) Show, using the rule rk(CY) = rk(Y) − dim C (Y) ∩ C (C)⊥, see
Theorem 5 (p. 145), that

rk(Y′CY) = rk(CY) = c− 1 and rk(X′CX) = rk(CX) = r− 1 ,

where c and r refer to the number of categories of y and x, respec-
tively; see Exercise 19.12 (p. 435) In this situation of course c = r = 2.

(d) Confirm that (Y′Y)−1 is a generalized inverse of Y′CY, i.e.,

Y′CY · (Y′Y)−1 ·Y′CY = Y′CY ,

(Dc − 1
ncc′) ·D−1

c · (Dc − 1
ncc′) = Dc − 1

ncc′.
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See also part (b) of Exercise 0.11 (p. 56), Exercise 4.9 (p. 145), and
Exercise 19.12 (p. 435).

• Solution to Ex. 0.8:

(a) 1′2X′CY12 = 1′nC1n = 0 .
(b) X12 = 1n = Y12 =⇒ 1n ∈ C (X) ∩ C (Y) and hence dim C (X) ∩

C (Y) ≥ 1. For example, if X = Y, then dim C (X) ∩ C (Y) = 2 > 1.
(c) rk(Y′CY) = rk[(CY)′CY] = rk(Y′C) = rk(Y)− dim C (Y) ∩ C (1n)

= rk(Y)− 1 = c− 1.
(d) Because

(Dc − 1
ncc′) ·D−1

c · (Dc − 1
ncc′) = (In − 1

ncc′D−1
c )(Dc − 1

ncc′)
= Dc − 1

ncc′ − 1
ncc′ + 1

n2 c c′D−1
c c︸ ︷︷ ︸

=n

c′ ,

and

c′D−1
c c = (c1, . . . , cc) diag(1/c1, . . . , 1/cc)(c1, . . . , cc)′ = c1 + . . .+cc = n,

the claim follows. �

0.9 (Continued . . . ).

(a) What is the interpretation of the matrix

G =
√
n (X′X)−1/2X′CY(Y′Y)−1/2 =

√
nD−1/2

r (F−E)D−1/2
c ?

• Solution to (a):

G =
√
n (X′X)−1/2X′CY(Y′Y)−1/2 =

√
nD−1/2

r (F−E)︸ ︷︷ ︸
:=Z

D−1/2
c

=
√
n diag( 1√

r1
, . . . , 1√

rr
)Z diag( 1√

c1
, . . . , 1√

cc
)

=
{√

n
zij√
ricj

}
=
{
fij − eij√
ricj/n

}
=
{
fij − eij√

eij

}
.

(b) Convince yourself that the matrix

G∗ = D−1/2
r (F−E)D−1/2

c

remains invariant if instead of frequencies we consider proportions
so that the matrix F is replaced with 1

nF and the matrices E, Dr
and Dc are calculated accordingly.



Exercises: Some Solutions (October 3, 2012) 55

(c) Show that the χ2-statistic for testing the independence of x and y
can be written as

χ2 =
r∑
i=1

c∑
j=1

(fij − eij)2

eij
= ‖G‖2

F = tr(G′G) = n tr(PXCPYC) .

See also Exercise 19.13.

• Solution to (c):

‖G‖2
F = tr(GG′)

= n tr[(X′X)−1/2X′CY(Y′Y)−1/2 · (Y′Y)−1/2Y′CX(X′X)−1/2]
= n tr[(X′X)−1X′CY(Y′Y)−1Y′CX]
= n tr[X(X′X)−1X′CY(Y′Y)−1Y′C] = n tr(PXCPYC) . �

(d) Show that the contribution of the ith column of F on the χ2, χ2(f i),
say, can be expressed as (a kind of squared Mahalanobis distance)

χ2(f i) = (f i − ei)′D−1(f i − ei) ,

where

D = diag(ei) =
(
ei1 0
0 ei2

)
=
(
r1ci/n 0

0 r2ci/n

)
= ci

(
r1/n 0

0 r2/n

)
.

0.10 (Multinomial distribution). Consider the random vectors (for simplic-
ity only three-dimensional)

z1 =

z11
z21
z31

 , . . . , zm =

z1m
z2m
z3m

 , x = z1 + · · ·+ zm ,

where zi are identically and independently distributed random vectors
so that each zi is defined so that only one element gets value 1 the rest
being 0. Let P(zi1 = 1) = p1, P(zi2 = 1) = p2, and P(zi3 = 1) = p3 for
i = 1, . . . ,m; p1 + p2 + p3 = 1, each pi > 0, and denote p = (p1, p2, p3)′.
Show that

E(zi) = (p1, p2, p3)′ = p , E(x) = mp ,

and

cov(zi) =

p1(1− p1) −p1p2 −p1p3
−p2p1 p2(1− p2) −p2p3
−p3p1 −p3p2 p3(1− p3)

 =

p1 0 0
0 p2 0
0 0 p3

− pp′

:= Dp − pp′ := Σ , cov(x) = mΣ .
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Then x follows a multinomial distribution with parameters m and p:
x ∼ Mult(m,p).

0.11 (Continued . . . ). Confirm:

(a) Σ is double-centered (row and column sums are zero), singular and
has rank 2.

(b) ΣD−1
p Σ = Σ, i.e., D−1

p is a generalized inverse of Σ. Confirm that
D−1

p does not necessarily satisfy any other Moore–Penrose condi-
tions. See also Exercises 0.8 (p. 53) and 4.9 (p. 145).

(c) We can think (confirm . . . ) that the columns (or rows if we wish) of a
contingency table are realizations of a multinomial random variable.
Let x1 and x2 represent two columns (two observations) from such a
random variable and assume that instead of the frequencies we con-
sider proportions y1 = x1/c1 and y2 = x2/c2. Then xi ∼ Mult(ci,p)
and cov(yi) = 1

ci
Σ, where Σ = Dp − pp′, and the squared Ma-

halanobis distance, say M , between the vectors x1 and x2 can be
defined as follows:

M = c1c2(c1 + c2)−1(x1 − x2)′Σ−(x1 − x2)
= c1c2(c1 + c2)−1(x1 − x2)′D−1

p (x1 − x2) .

Neudecker (1997), Puntanen, Styan & Subak-Sharpe (1998),
Greenacre (2007, p. 270).

0.12. Let Pn×n be an idempotent matrix. Show that

C (P) ∩ C (In −P) = {0} and C (In −P) = N (P) .

• Solution to Ex. 0.12:

(a) u ∈ C (P) ∩ C (I−P) =⇒ ∃ α,β :

u = Pα = (I−P)β.

Premultiplying the above equation by P yields

Pu = P2α = P(I−P)β = (P−P2)β = 0, because P2 = P .

Hence also P2α = 0, i.e., P2α = Pα = u = 0.

(b) Let’s first show that C (I−P) ⊂ N (P). Now u ∈ C (I−P) =⇒ ∃ α:

u = (I−P)α. (∗)

Premultiplying (∗) by P:

Pu = P(I−P)α = (P−P2)α = 0 =⇒ u ∈ N (P),
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and thereby C (I−P) ⊂ N (P). It remains to show that N (P) ⊂ C (I−P):

u ∈ N (P) =⇒ Pu = 0 =⇒ u−Pu = u
=⇒ (I−P)u = u =⇒ u ∈ C (I−P).

�

0.13. Confirm: A ≥L B and B ≥L C =⇒ A ≥L C .

• Solution to Ex. 0.13:

A ≥L B and B ≥L C =⇒ A−B = KK′, B−C = LL′

=⇒ A = KK′ + B, C = −LL′ + B

=⇒ A−C = KK′ + LL′ ≥L 0.

�

0.14. Suppose that x and y are p-dimensional random vectors. Confirm:

(a) cov(x + y) = cov(x) + cov(y) ⇐⇒ cov(x,y) = − cov(y,x);
if A = −A′, A is said to be skew-symmetric.

(b) cov(x− y) = cov(x)− cov(y) ⇐⇒ cov(x,y) + cov(y,x) = 2 cov(y).

• Solution to Ex. 0.14:

(a) cov(x + y) = cov(x) + cov(y) + cov(x,y) + cov(y,x) = cov(x) + cov(y)
⇐⇒

cov(x,y) = − cov(y,x) ⇐⇒ Σxy = −Σ′xy.
(b) cov(x− y) = cov(x) + cov(y)− cov(x,y)− cov(y,x) = cov(x)− cov(y)

⇐⇒
− cov(y) = cov(y)− cov(x,y)− cov(y,x)
⇐⇒

cov(x,y) + cov(y,x) = 2 cov(y).

�
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0.24. Consider the set of numbers A = {1, 2, . . . , N} and let x1, x2, . . . , xp
denote a random sample selected without a replacement from A. Denote
y = x1 + x2 + · · ·+ xp = 1′px. Confirm the following:

(a) var(xi) = N2−1
12 , cor(xi, xj) = − 1

N−1 = % , i, j = 1, . . . , p ,
(b) cor2(x1, y) = cor2(x1, x1 + · · ·+ xp) = 1

p +
(
1− 1

p

)
% .

See also Section 10.6 (p. 234).

• Solution to Ex. 0.24:

Clearly each xi follows a discrete uniform distribution, Unif(1, . . . , N), so
that

E(xi) = 1
N

(1 + 2 + · · ·+N) = N + 1
2 := µ ,

and the variance is

var(xi) = 1
N

N∑
i=1

(i− µ)2 = 1
N

N∑
i=1

i2 − µ2 = N2 − 1
12 := σ2,

where we have used the fact
N∑
i=1

i2 = N(N + 1)(2N + 1)
6 .

We will next show that

cov(xi, xj) = − 1
N − 1

N2 − 1
12 = − 1

N − 1 σ
2 = −N + 1

12 ,

cor(xi, xj) =
− 1
N−1 σ

2

σ · σ = − 1
N − 1 := % , i 6= j .

For convenience, let z1, z2, . . . , zp denote a random sample selected with a
replacement from {1, 2, . . . , N}. Because zi and zj (i 6= j) are uncorrelated
we trivially have

cov(zi, zj) = 1
N2

N∑
k=1

N∑
`=1

(k − µy)(`− µy) := 1
N2 SPzizj = 0 .

In view of

cov(xi, xj) = 1
N(N − 1)

N∑
k=1

N∑
`=1
k 6=`

(k − µy)(`− µy) := 1
N(N − 1)SPxixj ,

we get
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SPxixj = SPzizj −
N∑
k=1

(k − µy)2 = 0−Nσ2 = −N N2 − 1
12 ,

cov(xi, xj) = − 1
N(N − 1) N

N2 − 1
12 = −N + 1

12 ,

cor(xi, xj) = − (N + 1)/12
(N2 − 1)/12 = − 1

N − 1 = % .

If y = x1 + · · ·+ xp = 1′x, then

cor2(x1, y) = cor2(x1, x1 + · · ·+ xp) = cov2(x1, y)
var(x1) var(y) .

Now

var(xi) = N2 − 1
12 = σ2, i = 1, . . . , p ,

var(y) = var(1′x) = 1′ cov(x)1 = 1′Σ1 ,

where

cov(x) = Σ = σ2


1 % . . . %
% 1 . . . %
...

... . . . ...
% % . . . 1

 ∈ Rp×p,

cor(xi, xj) = % = σij
σiσj

= σij
σ2 =⇒ σij = σ2% .

Hence
var(y) = 1′Σ1 = pσ2[1 + (p− 1)%] .

Moreover,

cov(x1, y) = cov(x1, x1 + · · ·+ xp)
= cov(x1, x1) + cov(x1, x2) + · · ·+ cov(x1, xp)
= σ2 + σ12 + · · ·+ σ1p

= σ2[1 + (p− 1)%] ,

and thereby

cor2(x1, y) = σ4[1 + (p− 1)%)]2
σ2 · pσ2[1 + (p− 1)%]

= 1
p

+ p− 1
p

%

= 1
p

+
(
1− 1

p

)
% .
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0.25 (Hotelling’s T 2). Let U′1 and U′2 be independent random samples from
Np(µ1,Σ) and Np(µ2,Σ), respectively. Denote Ti = U′i(Ini − Jni)Ui,
and S∗ = 1

f (T1 + T2), where f = n1 + n2 − 2. Confirm that

T 2 = n1n2
n1+n2

(ū1 − ū2)′S−1
∗ (ū1 − ū2) ∼ T2(p, n1 + n2 − 2) , (a)

where T2(a, b) refers to the Hotelling’s T 2 distribution; see (0.128) (p. 26).
It can be shown that if µ1 = µ2, then

n1+n2−p−1
(n1+n2−2)p T

2 ∼ F(p, n1 + n2 − p− 1) . (b)

Notice: In (a) we should actually assume that µ1 = µ2.

• Solution to Ex. 0.25:

Recall the Wishart distribution and Hotelling’s T 2 distribution:

• Let U′ = (u(1) : . . . : u(n)) be a random sample from Np(0,Σ), i.e.,
u(i)’s are independent and each u(i) ∼ Np(0, Σ). Then W = U′U =∑n
i=1 u(i)u′(i) is said to a have a Wishart distribution with n degrees of

freedom and scale matrix Σ, and we write W ∼Wp(n,Σ).
• Let U′ be a random sample from Np(µ, Σ). Then ū = 1

nU′1n and T =
U′(I− J)U are independent and T ∼Wp(n− 1,Σ).

• Suppose v ∼ Np(0, Σ), W ∼ Wp(m,Σ), v and W are independent, and
that Σ6 is positive definite. Hotelling’s T 2 distribution is the distribution
of

T 2 = m · v′W−1v = v′
( 1
mW

)−1v , (c)

and is denoted as T 2 ∼ T2(p,m).

In the situation of Ex. 0.25, T1 ∼Wp(n1− 1,Σ) and T2 ∼Wp(n2− 1,Σ)
and T1 and T2 are independent. Hence it is easy to conclude (at least easy
to believe . . . ) that their sum has property

T1 + T2 ∼Wp(n1 + n2 − 2,Σ) .

Suppose that µ1 = µ2. Then the difference ū1 − ū2 obviously has the distri-
bution

ū1 − ū2 ∼ Np(0, 1
n1

Σ + 1
n2

Σ) = Np(0, n1+n2
n1n2

Σ) ,

and thereby √
n1n2
n1+n2

(ū1 − ū2) ∼ Np(0, Σ) .

6 In the Tricks Book here is erroneously W.
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Substituting

v =
√

n1n2
n1+n2

(ū1 − ū2) ,

W = T1 + T2 , m = n1 + n2 − 2 ,

into (c) yields (a).
For further details concerning the testing of hypothesis µ1 = µ2, see pages

233–234. �

0.26 (Continued . . . ). Show that if n1 = 1, then the Hotelling’s T 2 becomes

T 2 = n2
n2+1 (u(1) − ū2)′S−1

2 (u(1) − ū2) .

• Solution to Ex. 0.26:

Now we have only one observation u(1) from population 1 and n2 obser-
vations from population 2 and

S2 = 1
n2−1 T2 .

Hotelling’s T 2 becomes

T 2 = n1n2
n1+n2

(ū1 − ū2)′S−1
∗ (ū1 − ū2)

= n2
n2+1 (u(1) − ū2)′S−1

2 (u(1) − ū2) ∼ T2(p, n2 − 1) .

If µ1 = µ2, then
n1+n2−p−1
(n1+n2−2)p T

2 ∼ F(p, n1 + n2 − p− 1) ,

which in this case becomes
n2−p

(n2−1)p T
2 ∼ F(p, n2 − p) ,

n2(n2−p)
(n2

2−1)p (u(1) − ū2)′S−1
2 (u(1) − ū2) ∼ F(p, n2 − p) . (a)

Notice: We can denote

(u(1) − ū2)′S−1
2 (u(1) − ū2) = MHLN2(u(1), ū2,S2) . (b)

Above ū2 and S2 are being calculated from the sample U2 while the single
observation u(1) does not belong to this sample. The resulting Mahalanobis
distance in (b) differs from the “usual” Mahalanobis distance (squared)

(u(i) − ū)′S−1(u(i) − ū) = MHLN2(u(i), ū,S) , (c)
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where u(i) is one observation in the data matrix U, S = covd(U), and ū =
U′1n/n.

Problem: Try to compare (b) and (c).
• • If n1 = 1 and also p = 1, then (a) becomes

n2(n2 − 1)
n2

2 − 1 (u1 − ū2)s−2
2 (u1 − ū2) = n2

n2 + 1
(u1 − ū2)2

s2
2

∼ F(1, n2 − 1) ,

where ū2 and s2
2 are calculated from the “second” sample. A clearer notation

can be obtained from Exercise 8.9 (p. 186) which expresses the square root
of the above test statistics as

t =
yn − ȳ(n)

s(n)/
√

1− 1
n

=
√
n− 1
n

yn − ȳ(n)

s(n)

= yn − ȳ
s(n)

√
1− 1

n

=
√

n

n− 1
yn − ȳ
s(n)

,

where ȳ(n) is the mean of y1, . . . , yn−1 and s(n) their standard deviation; ȳ is
the mean of all yi’s. This t-test statistic is the externally Studentized residual.
•• If p = 1 then, using the notation of Exercise 8.12 (p. 187), Hotelling’s T 2

becomes

T 2 = n1n2
n1+n2

(ū1 − ū2)′S−1
∗ (ū1 − ū2)

= n1n2
n1+n2

· (ȳ1 − ȳ2) ·
(

SS1 + SS2
n1 + n2 − 2

)−1
· (ȳ1 − ȳ2) ∼ T2(1, n1 + n2 − 2) ,

and the Hotelling’s T 2 is precisely the F -test statistics for the hypothesis
µ1 = µ2:

T 2 = F

= n1n2
n1 + n2

· (ȳ1 − ȳ2) ·
(

SS1 + SS2
n1 + n2 − 2

)−1
· (ȳ1 − ȳ2)

= (ȳ1 − ȳ2)2

SS1 + SS2
n1 + n2 − 2

(
1
n1

+ 1
n2

) = n1(ȳ1 − ȳ)2 + n2(ȳ2 − ȳ)2

SS1 + SS2
n1 + n2 − 2

= (ȳ1 − ȳ2)2

SSE
n− 2

n1 + n2
n1n2

∼ F(1, n1 + n2 − 2) = t2(n1 + n2 − 2) .

•• If U′ is a random sample from Np(µ,Σ), then

• Hotelling’s T 2: T 2 = n(ū− µ0)′S−1(ū− µ0) = n ·MHLN2(ū,µ0,S),
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n−p
(n−1)pT

2 ∼ F(p, n− p, θ), θ = n(µ− µ0)′Σ−1(µ− µ0) .

• Hypothesis µ = µ0 is rejected at risk level α, if

n(ū− µ0)′S−1(ū− µ0) > p(n−1)
n−p Fα;p,n−p .

• A 100(1 − α)% confidence region for the mean of the Np(µ,Σ) is the
ellipsoid determined by all µ such that

n(ū− µ)′S−1(ū− µ) ≤ p(n−1)
n−p Fα;p,n−p .

�
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