Exercises: Some Solutions (October 3, 2012)

These exercises are supposed to be warm-up exercises- to get rid of the possible rust in the reader's matrix engine.
0.1 (Contingency table, 2×2). Consider three frequency tables (contingency tables) below. In each table the row variable is x.
(a) Write up the original data matrices and calculate the correlation coefficients $r_{x y}, r_{x z}$ and $r_{x u}$.
(b) What happens if the location (cell) of the zero frequency changes while other frequencies remain mutually equal?
(c) Explain why $r_{x y}=r_{x u}$ even if the u-values 2 and 5 are replaced with arbitrary a and b such that $a<b$.

$$
\begin{aligned}
& \\
& \text { u } \\
&
\end{aligned}
$$

- Solution to Ex. 0.1
$\mathbf{A}=(\mathbf{x}: \mathbf{y})=\left(\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right), \quad \mathbf{B}=(\mathbf{x}: \mathbf{z})=\left(\begin{array}{cc}0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 1 \\ 1 & 1\end{array}\right), \quad \mathbf{C}=(\mathbf{x}: \mathbf{u})=\left(\begin{array}{cc}0 & 2 \\ 0 & 5 \\ 5 & 5\end{array}\right)$.
In all cases the correlation coefficient is 0.5 . Recall that

$$
\begin{aligned}
r_{x y} & =\frac{\mathrm{SP}_{x y}}{\sqrt{\mathrm{SS}_{x} \mathrm{SS}_{y}}}=\frac{s_{x y}}{s_{x} s_{y}}, \\
\mathrm{SS}_{x} & =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}, \\
\mathrm{SP}_{x y} & =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum_{i=1}^{n} x_{i} y_{i}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right) \\
& =\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y} .
\end{aligned}
$$

Note: In \mathbf{A} the variables x and y have the same variances, in which case the correlation coefficient and the slope $\hat{\beta}_{1}$ are identical:

$$
\hat{\beta}_{1}=\frac{\mathrm{SP}_{x y}}{\mathrm{SS}_{x}}=\frac{s_{x y}}{s_{x}^{2}}=r_{x y} \frac{s_{y}}{s_{x}}=r_{x y}, \text { if } s_{x}=s_{y}
$$

If the cell of the zero-frequency changes, then $\left|r_{x y}\right|$ remains the same but the sign may change. In the following cases $r_{x y}=-0.5$:
(c) We try to find to find real numbers α and β which have the property $u_{i}=\alpha+\beta y_{i}, i=1,2,3$, i.e.,
$a=\alpha+\beta \cdot 0, \quad b=\alpha+\beta \cdot 1 \Longrightarrow \alpha=a, \beta=b-a \Longrightarrow u_{i}=a+(b-a) y_{i}$.
Because the u-values are obtained by a linear transformation $u_{i}=a+(b-a) y_{i}$, where $b-a>0$, we necessarily have $r_{x u}=r_{x y}$.

If the transformation were $u_{i}=c+d y_{i}$, where $d<0$, then $r_{x u}=-r_{x y}$.
0.2. Prove the following results concerning two dichotomous variables whose observed frequency table is given below.

$$
\begin{aligned}
& \operatorname{var}_{\mathrm{s}}(y)=\frac{1}{n-1} \frac{\gamma \delta}{n}=\frac{n}{n-1} \cdot \frac{\delta}{n}\left(1-\frac{\delta}{n}\right), \\
& \begin{array}{cc}
n-1 n & n-1
\end{array} \quad n(n), \\
& \chi^{2}=\frac{n(a d-b c)^{2}}{\alpha \beta \gamma \delta}=n r^{2} .
\end{aligned}
$$

- Solution to Ex. 0.2

$$
\begin{aligned}
\bar{y} & =\frac{\delta}{n}, \quad \bar{x}=\frac{\beta}{n}, \\
\operatorname{var}_{\mathrm{s}}(y) & =\frac{1}{n-1}\left(\sum_{i=1}^{n} y_{i}^{2}-n \bar{y}^{2}\right)=\frac{1}{n-1}\left(\delta-n \frac{\delta^{2}}{n^{2}}\right) \\
& =\frac{1}{n-1} \delta\left(1-\frac{\delta}{n}\right) \\
& =\frac{n}{n-1} \frac{\delta}{n}\left(1-\frac{\delta}{n}\right)=\frac{n}{n-1} \frac{\delta \gamma}{n^{2}}, \\
\operatorname{cov}_{\mathrm{s}}(x, y) & =\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y}\right)=\frac{1}{n-1}\left(d-n \frac{\beta}{n} \frac{\delta}{n}\right)
\end{aligned}
$$

$$
=\frac{n}{n-1}\left(\frac{d}{n}-\frac{\beta}{n} \frac{\delta}{n}\right) .
$$

In view of

$$
\begin{aligned}
\frac{d}{n}-\frac{\beta}{n} \cdot \frac{\delta}{n} & =\frac{1}{n^{2}}[n d-(c+d)(b+d)] \\
& =\frac{1}{n^{2}}\left[(a+b+c+d) d-\left(c b+c d+d b+d^{2}\right)\right] \\
& =\frac{1}{n^{2}}(a d-b c)
\end{aligned}
$$

we get

$$
\begin{aligned}
\operatorname{cov}_{\mathrm{s}}(x, y) & =\frac{n}{n-1} \frac{a d-b c}{n^{2}} \\
& =\frac{1}{n-1} \frac{a d-b c}{n}
\end{aligned}
$$

Note: According to 0.131 and 0.133, we can consider a data matrix $\mathbf{U}=\left(\mathbf{u}_{(1)}: \ldots: \mathbf{u}_{(n)}\right)^{\prime}$ and define a discrete random vector \mathbf{u}_{*} with probability function

$$
\mathrm{P}\left(\mathbf{u}_{*}=\mathbf{u}_{(i)}\right)=\frac{1}{n}, \quad i=1, \ldots, n
$$

i.e., every data point has the same probability to be the value of the random vector \mathbf{u}_{*}. Then

$$
\mathrm{E}\left(\mathbf{u}_{*}\right)=\overline{\mathbf{u}}, \quad \operatorname{cov}\left(\mathbf{u}_{*}\right)=\frac{1}{n} \mathbf{U}^{\prime} \mathbf{C} \mathbf{U}=\frac{n-1}{n} \mathbf{S}
$$

Below in Exercise 0.3 the considerations are done for a 2-dimensional random vector which is obtained from the frequency table above so that each observation has the same probability $1 / n$.
0.3. Let $\mathbf{z}=\binom{x}{y}$ be a discrete 2-dimensional random vector which is obtained from the frequency table in Exercise 0.2 so that each observation has the same probability $1 / n$. Prove that then

$$
\mathrm{E}(y)=\frac{\delta}{n}, \operatorname{var}(y)=\frac{\delta}{n}\left(1-\frac{\delta}{n}\right), \operatorname{cov}(x, y)=\frac{a d-b c}{n^{2}}, \operatorname{cor}(x, y)=\frac{a d-b c}{\sqrt{\alpha \beta \gamma \delta}} .
$$

- Solution to Ex. 0.3

$$
\begin{aligned}
\mathrm{E}(x) & =\mu_{x}=\frac{\alpha}{n} 0+\frac{\beta}{n} 1=\frac{\beta}{n}, \quad \mathrm{E}(y)=\frac{\delta}{n}, \\
\operatorname{var}(x) & =\sigma_{x}^{2}=\mathrm{E}\left(x^{2}\right)-\mu_{x}^{2} \\
& =\frac{\alpha}{n} 0^{2}+\frac{\beta}{n} 1^{2}-\frac{\beta^{2}}{n^{2}}=\frac{\beta}{n}\left(1-\frac{\beta}{n}\right)=\frac{\beta}{n} \frac{\alpha}{n},
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{var}(y) & =\frac{\delta}{n}\left(1-\frac{\delta}{n}\right)=\frac{\gamma}{n} \frac{\delta}{n}=\frac{\gamma}{n}\left(1-\frac{\gamma}{n}\right), \\
\operatorname{cov}(x, y) & =\sigma_{x y}=\mathrm{E}(x y)-\mu_{x} \mu_{y} \\
& =\frac{d}{n}-\frac{\beta}{n} \cdot \frac{\delta}{n} \\
& =\frac{1}{n^{2}}[n d-(c+d)(b+d)] \\
& =\frac{1}{n^{2}}\left[(a+b+c+d) d-\left(c b+c d+d b+d^{2}\right)\right] \\
& =\frac{1}{n^{2}}(a d-b c) .
\end{aligned}
$$

0.4 (Continued ...). Show that in terms of the probabilities:

$$
\begin{aligned}
& \operatorname{var}(y)=p_{\cdot 1} p_{\cdot 2} \\
& \operatorname{cov}(x, y)=p_{11} p_{22}-p_{12} p_{21} \\
& \operatorname{cor}(x, y)=\frac{p_{11} p_{22}-p_{12} p_{21}}{\sqrt{p_{\cdot 1} p_{\cdot 2} p_{1 \cdot} p_{2}}}=\varrho_{x y}
\end{aligned}
$$

y			
	0		
x	1	total	
0	p_{11}	p_{12}	$p_{1 .}$
1	p_{21}	p_{22}	p_{2}.
total	$p_{\cdot 1}$	$p_{\cdot 2}$	1

- Solution to Ex. 0.4

All probabilities are obtained from the table of Exercise 0.2 by dividing each figure by n. Hence

$$
\begin{aligned}
\mathrm{E}(x) & =\frac{\beta}{n}=p_{2 \cdot}, \quad \mathrm{E}(y)=\frac{\delta}{n}=p_{\cdot 2}, \\
\operatorname{var}(x) & =\frac{\beta}{n}\left(1-\frac{\beta}{n}\right)=\frac{\alpha}{n}\left(1-\frac{\alpha}{n}\right)=p_{1 \cdot} \cdot p_{2 \cdot}, \\
\operatorname{var}(y) & =\frac{\delta}{n}\left(1-\frac{\delta}{n}\right)=\frac{\gamma}{n}\left(1-\frac{\gamma}{n}\right)=p \cdot{ }_{\cdot 1} p_{\cdot 2}, \\
\operatorname{cov}(x, y) & =\frac{d}{n}-\frac{\beta}{n} \cdot \frac{\delta}{n} \\
& =p_{22}-p_{2 \cdot p \cdot 2} \\
& =\frac{a d-b c}{n^{2}} \\
& =p_{11} p_{22}-p_{12} p_{21} .
\end{aligned}
$$

0.5 (Continued ...). Confirm:

$$
\varrho_{x y}=0 \Leftrightarrow \operatorname{det}\left(\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=0 \Leftrightarrow \frac{p_{11}}{p_{21}}=\frac{p_{12}}{p_{22}} \Leftrightarrow \frac{a}{c}=\frac{b}{d} .
$$

0.6 (Continued ...). Show, using 0.85 (p. 19), that the dichotomous random variables x and y are statistically independent if and only if $\varrho_{x y}=0$. By the way, for interesting comments on 2×2 tables, see Speed (2008b).

- Solution to Ex. 0.6

The random variables x and y are statistically independent if and only if

$$
\begin{equation*}
\mathrm{P}(x=i, y=j)=\mathrm{P}(x=i) \mathrm{P}(y=j) \quad \text { for all } i=0,1, j=0,1 \tag{*}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
p_{i j}=p_{i \cdot p \cdot j} \quad \text { for all } i=1,2, j=1,2 . \tag{1}
\end{equation*}
$$

while x and y are uncorrelated if and only if $\operatorname{cov}(x, y)=p_{22}-p_{2 \cdot p} \cdot{ }_{\cdot 2}=0$, i.e.,

$$
\begin{equation*}
p_{22}=p_{2 \cdot p \cdot 2} \tag{2}
\end{equation*}
$$

Suppose that (2) holds, i.e., x and y are uncorrelated. Then (2) implies that (1) holds for $i=j=2$. Moreover, (2) implies

$$
\begin{aligned}
& p_{21}=p_{2 \cdot}-p_{22}=p_{2 \cdot}-p_{2 \cdot} \cdot p_{\cdot 2}=p_{2 \cdot}\left(1-p_{\cdot 2}\right)=p_{2 \cdot} p_{\cdot 1}, \\
& p_{12}=p_{\cdot 2}-p_{22}=p_{\cdot 2}-p_{2 \cdot} \cdot p_{\cdot 2}=p_{\cdot 2}\left(1-p_{2 \cdot}\right)=p_{\cdot 2} p_{1 \cdot}, \\
& p_{11}=p_{1 \cdot}-p_{12}=p_{1 \cdot}-p_{1 \cdot} \cdot p_{\cdot 2}=p_{1 \cdot}\left(1-p_{\cdot 2}\right)=p_{1 \cdot p_{\cdot 1}} .
\end{aligned}
$$

Thus we have shown that (2) implies (1). Recall that statistical independence implies that $\mathrm{E}(x y)=\mathrm{E}(x) \mathrm{E}(y)=\mu_{x} \mu_{y}$ and hence $\operatorname{cov}(x, y)=\mathrm{E}(x y)-$ $\mu_{x} \mu_{y}=0$.
0.7 (Continued, in a way ...). Consider dichotomous variables x and y whose values are A_{1}, A_{2} and B_{1}, B_{2}, respectively, and suppose we have n observations from these variables. Let us define new variables in the following way:

$$
\begin{aligned}
& x_{1}=1 \text { if } x \text { has value } A_{1}, \text { and } x_{1}=0 \text { otherwise, } \\
& x_{2}=1 \text { if } x \text { has value } A_{2}, \text { and } x_{2}=0 \text { otherwise, }
\end{aligned}
$$

and let y_{1} and y_{2} be defined in the corresponding way with respect to the values B_{1} and B_{2}. Denote the observed $n \times 4$ data matrix as $\mathbf{U}=\left(\mathbf{x}_{1}\right.$: $\left.\mathbf{x}_{2}: \mathbf{y}_{1}: \mathbf{y}_{2}\right)=(\mathbf{X}: \mathbf{Y})$. We are interested in the statistical dependence of the variables x and y and hence we prepare the following frequency table (contingency table):

y			
	B_{1}	B_{2}	total
A_{1}	f_{11}	f_{12}	r_{1}
A_{2}	f_{21}	f_{22}	r_{2}
total	c_{1}	c_{2}	n

Let $e_{i j}$ denote the expected frequency (for the usual χ^{2}-statistic for testing the independence) of the cell (i, j) and

$$
e_{i j}=\frac{r_{i} c_{j}}{n}, \quad \mathbf{E}=\left(\mathbf{e}_{1}: \mathbf{e}_{2}\right), \quad \mathbf{F}=\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right)=\left(\mathbf{f}_{1}: \mathbf{f}_{2}\right),
$$

and $\mathbf{c}=\binom{c_{1}}{c_{2}}, \mathbf{r}=\binom{r_{1}}{r_{2}}$. We may assume that all elements of \mathbf{c} and \mathbf{r} are nonzero. Confirm the following:
(a) $\operatorname{cor}_{\mathrm{d}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=-1, \operatorname{rank}(\mathbf{X}: \mathbf{Y}) \leq 3, \operatorname{rank}\left[\operatorname{cor}_{\mathrm{d}}(\mathbf{X}: \mathbf{Y})\right] \leq 2$,
(b) $\mathbf{X}^{\prime} \mathbf{1}_{n}=\mathbf{r}, \mathbf{Y}^{\prime} \mathbf{1}_{n}=\mathbf{c}, \quad \mathbf{X}^{\prime} \mathbf{X}=\operatorname{diag}(\mathbf{r})=\mathbf{D}_{\mathbf{r}}, \quad \mathbf{Y}^{\prime} \mathbf{Y}=\operatorname{diag}(\mathbf{c})=\mathbf{D}_{\mathbf{c}}$,
(c) $\mathbf{X}^{\prime} \mathbf{Y}=\mathbf{F}, \quad \mathbf{E}=\mathbf{r c}^{\prime} / n=\mathbf{X}^{\prime} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime} \mathbf{Y} / n=\mathbf{X}^{\prime} \mathbf{J} \mathbf{Y}$.
(d) The columns of $\mathbf{X}^{\prime} \mathbf{Y}\left(\mathbf{Y}^{\prime} \mathbf{Y}\right)^{-1}$ represent the conditional relative frequencies (distributions) of x.
(e) $\mathbf{F}-\mathbf{E}=\mathbf{X}^{\prime} \mathbf{C Y}$, where \mathbf{C} is the centering matrix, and hence $\frac{1}{n-1}(\mathbf{F}-$ \mathbf{E}) is the sample (cross)covariance matrix between the x - and y variables.

- Solution to Ex. 0.7

(a) Suppose that the observations are arranged so that

$$
\mathbf{X}=\left(\mathbf{x}_{1}: \mathbf{x}_{2}\right)=\left(\begin{array}{cc}
1 & 0 \\
\vdots & \vdots \\
1 & 0 \\
0 & 1 \\
\vdots & \vdots \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{1}_{r_{1}} & \mathbf{0} \\
\mathbf{0} & \mathbf{1}_{r_{2}}
\end{array}\right) \in \mathbb{R}^{n \times 2}
$$

Then obviously $\operatorname{cor}_{\mathrm{d}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=-1$ and similarly $\operatorname{cor}_{\mathrm{d}}\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)=-1$. Moreover,

$$
\operatorname{rk}(\mathbf{X}: \mathbf{Y})=\operatorname{rk}(\mathbf{X})+\operatorname{rk}(\mathbf{Y})-\operatorname{dim} \mathscr{C}(\mathbf{X}) \cap \mathscr{C}(\mathbf{Y}) \leq 2+2-1=3
$$

because $\mathbf{X} \mathbf{1}_{2}=\mathbf{1}_{n}=\mathbf{Y} \mathbf{1}_{2}$ and hence $\operatorname{dim} \mathscr{C}(\mathbf{X}) \cap \mathscr{C}(\mathbf{Y}) \geq 1$.
Denote $\operatorname{cor}_{\mathrm{d}}\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)=a$. Then, in view of $y_{2}=-y_{1}+1$, we have $\operatorname{cor}_{\mathrm{d}}\left(\mathbf{x}_{1}, \mathbf{y}_{2}\right)=-a$, and in view of $x_{2}=-x_{1}+1$, we have $\operatorname{cor}_{\mathrm{d}}\left(\mathbf{x}_{2}, \mathbf{y}_{1}\right)=$ $-a$, and similarly $\operatorname{cor}_{\mathrm{d}}\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)=a$, and so we can conclude that

$$
\begin{gathered}
\left.\operatorname{cor}_{\mathrm{d}}(\mathbf{X}: \mathbf{Y})\right]=\left(\begin{array}{rrrr}
1 & -1 & a & -a \\
-1 & 1 & -a & a \\
a & -a & 1 & -1 \\
-a & a & -1 & 1
\end{array}\right):=\mathbf{R}, \\
\operatorname{rank}(\mathbf{R})=\operatorname{rank}\left(\begin{array}{rr}
1 & a \\
-1 & -a \\
a & 1 \\
-a & -1
\end{array}\right) \leq 2 .
\end{gathered}
$$

(b) $\mathbf{X}^{\prime} \mathbf{1}_{n}=\left(\begin{array}{cc}\mathbf{1}_{r_{1}}^{\prime} & \mathbf{0}^{\prime} \\ \mathbf{0}^{\prime} & \mathbf{1}_{r_{2}}^{\prime}\end{array}\right) \mathbf{1}_{n}=\binom{r_{1}}{r_{2}}=\mathbf{r}, \quad \mathbf{Y}^{\prime} \mathbf{1}_{n}=\binom{c_{1}}{c_{2}}=\mathbf{c}$,
$\mathbf{X}^{\prime} \mathbf{X}=\left(\begin{array}{cc}r_{1} & 0 \\ 0 & r_{2}\end{array}\right)=\operatorname{diag}(\mathbf{r})=\mathbf{D}_{\mathbf{r}}, \quad \mathbf{Y}^{\prime} \mathbf{Y}=\operatorname{diag}(\mathbf{c})=\mathbf{D}_{\mathbf{c}}$,
(c) frequency table: $\mathbf{X}^{\prime} \mathbf{Y}=\mathbf{F}$,
theoretical frequencies: $\mathbf{E}=\mathbf{r c}^{\prime} / n=\mathbf{X}^{\prime} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime} \mathbf{Y} / n=\mathbf{X}^{\prime} \mathbf{J} \mathbf{Y}$.
(d) The columns of

$$
\mathbf{X}^{\prime} \mathbf{Y}\left(\mathbf{Y}^{\prime} \mathbf{Y}\right)^{-1}=\mathbf{F D}_{\mathbf{r}}^{-1}=\left(\begin{array}{ll}
f_{11} / c_{1} & f_{12} / c_{2} \\
f_{21} / c_{1} & f_{22} / c_{2}
\end{array}\right), \text { where } c_{i}=\#\left(y=B_{i}\right),
$$

represent the conditional relative frequencies (distributions) of x.
(e) $\mathbf{F}-\mathbf{E}=\mathbf{X}^{\prime} \mathbf{C Y}$, where \mathbf{C} is the centering matrix, and hence $\frac{1}{n-1}(\mathbf{F}-\mathbf{E})$ is the sample (cross)covariance matrix between the x - and y-variables.
0.8 (Continued ...).
(a) Show that $\mathbf{X}^{\prime} \mathbf{C Y}, \mathbf{X}^{\prime} \mathbf{C X}$, and $\mathbf{Y}^{\prime} \mathbf{C Y}$ are double-centered; $\mathbf{A}_{n \times p}$ is said to be double-centered if $\mathbf{A} \mathbf{1}_{p}=\mathbf{0}_{n}$ and $\mathbf{A}^{\prime} \mathbf{1}_{n}=\mathbf{0}_{p}$.
(b) Prove that $\mathbf{1}_{n} \in \mathscr{C}(\mathbf{X}) \cap \mathscr{C}(\mathbf{Y})$ and that it is possible that $\operatorname{dim} \mathscr{C}(\mathbf{X}) \cap$ $\mathscr{C}(\mathbf{Y})>1$.
(c) Show, using the $\operatorname{rule} \operatorname{rk}(\mathbf{C Y})=\operatorname{rk}(\mathbf{Y})-\operatorname{dim} \mathscr{C}(\mathbf{Y}) \cap \mathscr{C}(\mathbf{C})^{\perp}$, see Theorem 5 (p. 145), that

$$
\operatorname{rk}\left(\mathbf{Y}^{\prime} \mathbf{C Y}\right)=\operatorname{rk}(\mathbf{C Y})=c-1 \quad \text { and } \quad \operatorname{rk}\left(\mathbf{X}^{\prime} \mathbf{C X}\right)=\operatorname{rk}(\mathbf{C X})=r-1,
$$

where c and r refer to the number of categories of y and x, respectively; see Exercise 19.12 (p. 435) In this situation of course $c=r=2$.
(d) Confirm that $\left(\mathbf{Y}^{\prime} \mathbf{Y}\right)^{-1}$ is a generalized inverse of $\mathbf{Y}^{\prime} \mathbf{C Y}$, i.e.,

$$
\begin{gathered}
\mathbf{Y}^{\prime} \mathbf{C Y} \cdot\left(\mathbf{Y}^{\prime} \mathbf{Y}\right)^{-1} \cdot \mathbf{Y}^{\prime} \mathbf{C Y}=\mathbf{Y}^{\prime} \mathbf{C Y}, \\
\left(\mathbf{D}_{\mathbf{c}}-\frac{1}{n} \mathbf{c} \mathbf{c}^{\prime}\right) \cdot \mathbf{D}_{\mathbf{c}}^{-1} \cdot\left(\mathbf{D}_{\mathbf{c}}-\frac{1}{n} \mathbf{c \mathbf { c } ^ { \prime }}\right)=\mathbf{D}_{\mathbf{c}}-\frac{1}{n} \mathbf{c c}^{\prime} .
\end{gathered}
$$

See also part (b) of Exercise 0.11 (p. 56), Exercise 4.9 (p. 145), and Exercise 19.12 (p. 435).

- Solution to Ex. 0.8

(a) $\mathbf{1}_{2}^{\prime} \mathbf{X}^{\prime} \mathbf{C Y} \mathbf{1}_{2}=\mathbf{1}_{n}^{\prime} \mathbf{C} \mathbf{1}_{n}=0$.
(b) $\mathbf{X} \mathbf{1}_{2}=\mathbf{1}_{n}=\mathbf{Y} \mathbf{1}_{2} \Longrightarrow \mathbf{1}_{n} \in \mathscr{C}(\mathbf{X}) \cap \mathscr{C}(\mathbf{Y})$ and hence $\operatorname{dim} \mathscr{C}(\mathbf{X}) \cap$ $\mathscr{C}(\mathbf{Y}) \geq 1$. For example, if $\mathbf{X}=\mathbf{Y}$, then $\operatorname{dim} \mathscr{C}(\mathbf{X}) \cap \mathscr{C}(\mathbf{Y})=2>1$.
(c) $\operatorname{rk}\left(\mathbf{Y}^{\prime} \mathbf{C Y}\right)=\operatorname{rk}\left[(\mathbf{C Y})^{\prime} \mathbf{C Y}\right]=\operatorname{rk}\left(\mathbf{Y}^{\prime} \mathbf{C}\right)=\operatorname{rk}(\mathbf{Y})-\operatorname{dim} \mathscr{C}(\mathbf{Y}) \cap \mathscr{C}\left(\mathbf{1}_{n}\right)$ $=\operatorname{rk}(\mathbf{Y})-1=c-1$.
(d) Because

$$
\begin{aligned}
\left(\mathbf{D}_{\mathbf{c}}-\frac{1}{n} \mathbf{c c}^{\prime}\right) \cdot \mathbf{D}_{\mathbf{c}}^{-1} \cdot\left(\mathbf{D}_{\mathbf{c}}-\frac{1}{n} \mathbf{c c}^{\prime}\right) & =\left(\mathbf{I}_{n}-\frac{1}{n} \mathbf{c c}^{\prime} \mathbf{D}_{\mathbf{c}}^{-1}\right)\left(\mathbf{D}_{\mathbf{c}}-\frac{1}{n} \mathbf{c c}^{\prime}\right) \\
& =\mathbf{D}_{\mathbf{c}}-\frac{1}{n} \mathbf{c c}^{\prime}-\frac{1}{n} \mathbf{c c}^{\prime}+\frac{1}{n^{2}} \mathbf{c}_{\underbrace{\mathbf{c}^{\prime} \mathbf{D}_{\mathbf{c}}^{-1} \mathbf{c}}_{=n} \mathbf{c}^{\prime}}
\end{aligned}
$$

and
$\mathbf{c}^{\prime} \mathbf{D}_{\mathbf{c}}^{-1} \mathbf{c}=\left(c_{1}, \ldots, c_{c}\right) \operatorname{diag}\left(1 / c_{1}, \ldots, 1 / c_{c}\right)\left(c_{1}, \ldots, c_{c}\right)^{\prime}=c_{1}+\ldots+c_{c}=n$, the claim follows.
0.9 (Continued ...).
(a) What is the interpretation of the matrix

$$
\mathbf{G}=\sqrt{n}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1 / 2} \mathbf{X}^{\prime} \mathbf{C Y}\left(\mathbf{Y}^{\prime} \mathbf{Y}\right)^{-1 / 2}=\sqrt{n} \mathbf{D}_{\mathbf{r}}^{-1 / 2}(\mathbf{F}-\mathbf{E}) \mathbf{D}_{\mathbf{c}}^{-1 / 2} ?
$$

- Solution to (a):

$$
\begin{aligned}
\mathbf{G} & =\sqrt{n}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1 / 2} \mathbf{X}^{\prime} \mathbf{C Y}\left(\mathbf{Y}^{\prime} \mathbf{Y}\right)^{-1 / 2}=\sqrt{n} \mathbf{D}_{\mathbf{r}}^{-1 / 2} \underbrace{(\mathbf{F}-\mathbf{E})}_{:=\mathbf{Z}} \mathbf{D}_{\mathbf{c}}^{-1 / 2} \\
& =\sqrt{n} \operatorname{diag}\left(\frac{1}{\sqrt{r_{1}}}, \ldots, \frac{1}{\sqrt{r_{r}}}\right) \mathbf{Z} \operatorname{diag}\left(\frac{1}{\sqrt{c_{1}}}, \ldots, \frac{1}{\sqrt{c_{c}}}\right) \\
& =\left\{\sqrt{n} \frac{z_{i j}}{\sqrt{r_{i} c_{j}}}\right\}=\left\{\frac{f_{i j}-e_{i j}}{\sqrt{r_{i} c_{j} / n}}\right\}=\left\{\frac{f_{i j}-e_{i j}}{\sqrt{e_{i j}}}\right\} .
\end{aligned}
$$

(b) Convince yourself that the matrix

$$
\mathbf{G}_{*}=\mathbf{D}_{\mathbf{r}}^{-1 / 2}(\mathbf{F}-\mathbf{E}) \mathbf{D}_{\mathbf{c}}^{-1 / 2}
$$

remains invariant if instead of frequencies we consider proportions so that the matrix \mathbf{F} is replaced with $\frac{1}{n} \mathbf{F}$ and the matrices $\mathbf{E}, \mathbf{D}_{\mathbf{r}}$ and $\mathbf{D}_{\mathbf{c}}$ are calculated accordingly.
(c) Show that the χ^{2}-statistic for testing the independence of x and y can be written as

$$
\chi^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(f_{i j}-e_{i j}\right)^{2}}{e_{i j}}=\|\mathbf{G}\|_{F}^{2}=\operatorname{tr}\left(\mathbf{G}^{\prime} \mathbf{G}\right)=n \operatorname{tr}\left(\mathbf{P}_{\mathbf{X}} \mathbf{C} \mathbf{P}_{\mathbf{Y}} \mathbf{C}\right)
$$

See also Exercise 19.13 .

- Solution to (c):

$$
\begin{aligned}
& \|\mathbf{G}\|_{F}^{2}=\operatorname{tr}\left(\mathbf{G} \mathbf{G}^{\prime}\right) \\
& =n \operatorname{tr}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1 / 2} \mathbf{X}^{\prime} \mathbf{C Y}\left(\mathbf{Y}^{\prime} \mathbf{Y}\right)^{-1 / 2} \cdot\left(\mathbf{Y}^{\prime} \mathbf{Y}\right)^{-1 / 2} \mathbf{Y}^{\prime} \mathbf{C X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1 / 2}\right] \\
& =n \operatorname{tr}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{C Y}\left(\mathbf{Y}^{\prime} \mathbf{Y}\right)^{-1} \mathbf{Y}^{\prime} \mathbf{C X}\right] \\
& =n \operatorname{tr}\left[\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{C Y}\left(\mathbf{Y}^{\prime} \mathbf{Y}\right)^{-1} \mathbf{Y}^{\prime} \mathbf{C}\right]=n \operatorname{tr}\left(\mathbf{P}_{\mathbf{X}} \mathbf{C} \mathbf{P}_{\mathbf{Y}} \mathbf{C}\right)
\end{aligned}
$$

(d) Show that the contribution of the i th column of \mathbf{F} on the $\chi^{2}, \chi^{2}\left(\mathbf{f}_{i}\right)$, say, can be expressed as (a kind of squared Mahalanobis distance)

$$
\chi^{2}\left(\mathbf{f}_{i}\right)=\left(\mathbf{f}_{i}-\mathbf{e}_{i}\right)^{\prime} \mathbf{D}^{-1}\left(\mathbf{f}_{i}-\mathbf{e}_{i}\right)
$$

where

$$
\mathbf{D}=\operatorname{diag}\left(\mathbf{e}_{i}\right)=\left(\begin{array}{cc}
e_{i 1} & 0 \\
0 & e_{i 2}
\end{array}\right)=\left(\begin{array}{cc}
r_{1} c_{i} / n & 0 \\
0 & r_{2} c_{i} / n
\end{array}\right)=c_{i}\left(\begin{array}{cc}
r_{1} / n & 0 \\
0 & r_{2} / n
\end{array}\right) .
$$

0.10 (Multinomial distribution). Consider the random vectors (for simplicity only three-dimensional)

$$
\mathbf{z}_{1}=\left(\begin{array}{c}
z_{11} \\
z_{21} \\
z_{31}
\end{array}\right), \ldots, \mathbf{z}_{m}=\left(\begin{array}{c}
z_{1 m} \\
z_{2 m} \\
z_{3 m}
\end{array}\right), \quad \mathbf{x}=\mathbf{z}_{1}+\cdots+\mathbf{z}_{m}
$$

where \mathbf{z}_{i} are identically and independently distributed random vectors so that each \mathbf{z}_{i} is defined so that only one element gets value 1 the rest being 0 . Let $\mathrm{P}\left(z_{i 1}=1\right)=p_{1}, \mathrm{P}\left(z_{i 2}=1\right)=p_{2}$, and $\mathrm{P}\left(z_{i 3}=1\right)=p_{3}$ for $i=1, \ldots, m ; p_{1}+p_{2}+p_{3}=1$, each $p_{i}>0$, and denote $\mathbf{p}=\left(p_{1}, p_{2}, p_{3}\right)^{\prime}$. Show that

$$
\mathrm{E}\left(\mathbf{z}_{i}\right)=\left(p_{1}, p_{2}, p_{3}\right)^{\prime}=\mathbf{p}, \quad \mathrm{E}(\mathbf{x})=m \mathbf{p}
$$

and

$$
\begin{aligned}
\operatorname{cov}\left(\mathbf{z}_{i}\right) & =\left(\begin{array}{ccc}
p_{1}\left(1-p_{1}\right) & -p_{1} p_{2} & -p_{1} p_{3} \\
-p_{2} p_{1} & p_{2}\left(1-p_{2}\right) & -p_{2} p_{3} \\
-p_{3} p_{1} & -p_{3} p_{2} & p_{3}\left(1-p_{3}\right)
\end{array}\right)=\left(\begin{array}{ccc}
p_{1} & 0 & 0 \\
0 & p_{2} & 0 \\
0 & 0 & p_{3}
\end{array}\right)-\mathbf{p p}^{\prime} \\
& :=\mathbf{D}_{\mathbf{p}}-\mathbf{p p}^{\prime}:=\boldsymbol{\Sigma}, \quad \operatorname{cov}(\mathbf{x})=m \boldsymbol{\Sigma}
\end{aligned}
$$

Then \mathbf{x} follows a multinomial distribution with parameters m and \mathbf{p} : $\mathbf{x} \sim \operatorname{Mult}(m, \mathbf{p})$.
0.11 (Continued ...). Confirm:
(a) $\boldsymbol{\Sigma}$ is double-centered (row and column sums are zero), singular and has rank 2.
(b) $\boldsymbol{\Sigma} \mathbf{D}_{\mathbf{p}}^{-1} \boldsymbol{\Sigma}=\boldsymbol{\Sigma}$, i.e., $\mathbf{D}_{\mathbf{p}}^{-1}$ is a generalized inverse of $\boldsymbol{\Sigma}$. Confirm that $\mathbf{D}_{\mathbf{p}}^{-1}$ does not necessarily satisfy any other Moore-Penrose conditions. See also Exercises 0.8 (p. 53) and 4.9 (p. 145).
(c) We can think (confirm ...) that the columns (or rows if we wish) of a contingency table are realizations of a multinomial random variable. Let \mathbf{x}_{1} and \mathbf{x}_{2} represent two columns (two observations) from such a random variable and assume that instead of the frequencies we consider proportions $\mathbf{y}_{1}=\mathbf{x}_{1} / c_{1}$ and $\mathbf{y}_{2}=\mathbf{x}_{2} / c_{2}$. Then $\mathbf{x}_{i} \sim \operatorname{Mult}\left(c_{i}, \mathbf{p}\right)$ and $\operatorname{cov}\left(\mathbf{y}_{i}\right)=\frac{1}{c_{i}} \boldsymbol{\Sigma}$, where $\boldsymbol{\Sigma}=\mathbf{D}_{\mathbf{p}}-\mathbf{p} \mathbf{p}^{\prime}$, and the squared Mahalanobis distance, say M, between the vectors \mathbf{x}_{1} and \mathbf{x}_{2} can be defined as follows:

$$
\begin{aligned}
M & =c_{1} c_{2}\left(c_{1}+c_{2}\right)^{-1}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{\prime} \mathbf{\Sigma}^{-}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) \\
& =c_{1} c_{2}\left(c_{1}+c_{2}\right)^{-1}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{\prime} \mathbf{D}_{\mathbf{p}}^{-1}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) .
\end{aligned}
$$

| Neudecker | 1997), |
| :--- | :--- | :--- |
| Puntanen, Styan \& Subak-Sharpe | (1998), |
| Greenacre (2007\| p. 270). | |

0.12. Let $\mathbf{P}_{n \times n}$ be an idempotent matrix. Show that

$$
\mathscr{C}(\mathbf{P}) \cap \mathscr{C}\left(\mathbf{I}_{n}-\mathbf{P}\right)=\{\mathbf{0}\} \quad \text { and } \quad \mathscr{C}\left(\mathbf{I}_{n}-\mathbf{P}\right)=\mathscr{N}(\mathbf{P})
$$

- Solution to Ex. 0.12

(a) $\mathbf{u} \in \mathscr{C}(\mathbf{P}) \cap \mathscr{C}(\mathbf{I}-\mathbf{P}) \Longrightarrow \exists \boldsymbol{\alpha}, \boldsymbol{\beta}$:

$$
\mathbf{u}=\mathbf{P} \boldsymbol{\alpha}=(\mathbf{I}-\mathbf{P}) \boldsymbol{\beta}
$$

Premultiplying the above equation by \mathbf{P} yields

$$
\mathbf{P u}=\mathbf{P}^{2} \boldsymbol{\alpha}=\mathbf{P}(\mathbf{I}-\mathbf{P}) \boldsymbol{\beta}=\left(\mathbf{P}-\mathbf{P}^{2}\right) \boldsymbol{\beta}=\mathbf{0}, \quad \text { because } \mathbf{P}^{2}=\mathbf{P}
$$

Hence also $\mathbf{P}^{2} \boldsymbol{\alpha}=\mathbf{0}$, i.e., $\mathbf{P}^{2} \boldsymbol{\alpha}=\mathbf{P} \boldsymbol{\alpha}=\mathbf{u}=\mathbf{0}$.
(b) Let's first show that $\mathscr{C}(\mathbf{I}-\mathbf{P}) \subset \mathscr{N}(\mathbf{P})$. Now $\mathbf{u} \in \mathscr{C}(\mathbf{I}-\mathbf{P}) \Longrightarrow \exists \boldsymbol{\alpha}$:

$$
\begin{equation*}
\mathbf{u}=(\mathbf{I}-\mathbf{P}) \boldsymbol{\alpha} \tag{*}
\end{equation*}
$$

Premultiplying ($*$) by \mathbf{P} :

$$
\mathbf{P u}=\mathbf{P}(\mathbf{I}-\mathbf{P}) \boldsymbol{\alpha}=\left(\mathbf{P}-\mathbf{P}^{2}\right) \boldsymbol{\alpha}=\mathbf{0} \Longrightarrow \mathbf{u} \in \mathscr{N}(\mathbf{P})
$$

and thereby $\mathscr{C}(\mathbf{I}-\mathbf{P}) \subset \mathscr{N}(\mathbf{P})$. It remains to show that $\mathscr{N}(\mathbf{P}) \subset \mathscr{C}(\mathbf{I}-\mathbf{P})$:

$$
\begin{aligned}
\mathbf{u} \in \mathscr{N}(\mathbf{P}) & \Longrightarrow \mathbf{P u}=\mathbf{0} \Longrightarrow \mathbf{u}-\mathbf{P} \mathbf{u}=\mathbf{u} \\
& \Longrightarrow(\mathbf{I}-\mathbf{P}) \mathbf{u}=\mathbf{u} \Longrightarrow \mathbf{u} \in \mathscr{C}(\mathbf{I}-\mathbf{P})
\end{aligned}
$$

0.13. Confirm: $\mathbf{A} \geq_{\llcorner } \mathbf{B}$ and $\mathbf{B} \geq_{\llcorner } \mathbf{C} \quad \Longrightarrow \quad \mathbf{A} \geq_{\llcorner } \mathbf{C}$.

- Solution to Ex. 0.13

$$
\begin{gathered}
\mathbf{A} \geq_{\mathrm{L}} \mathbf{B} \text { and } \mathbf{B} \geq_{\mathrm{L}} \mathbf{C} \Longrightarrow \mathbf{A}-\mathbf{B}=\mathbf{K} \mathbf{K}^{\prime}, \mathbf{B}-\mathbf{C}=\mathbf{L} \mathbf{L}^{\prime} \\
\Longrightarrow \mathbf{A}=\mathbf{K} \mathbf{K}^{\prime}+\mathbf{B}, \mathbf{C}=-\mathbf{L L}^{\prime}+\mathbf{B} \\
\Longrightarrow \mathbf{A}-\mathbf{C}=\mathbf{K} \mathbf{K}^{\prime}+\mathbf{L L}^{\prime} \geq_{\mathrm{L}} \mathbf{0} .
\end{gathered}
$$

0.14. Suppose that \mathbf{x} and \mathbf{y} are p-dimensional random vectors. Confirm:
(a) $\operatorname{cov}(\mathbf{x}+\mathbf{y})=\operatorname{cov}(\mathbf{x})+\operatorname{cov}(\mathbf{y}) \Longleftrightarrow \operatorname{cov}(\mathbf{x}, \mathbf{y})=-\operatorname{cov}(\mathbf{y}, \mathbf{x})$; if $\mathbf{A}=-\mathbf{A}^{\prime}, \mathbf{A}$ is said to be skew-symmetric.
(b) $\operatorname{cov}(\mathbf{x}-\mathbf{y})=\operatorname{cov}(\mathbf{x})-\operatorname{cov}(\mathbf{y}) \Longleftrightarrow \operatorname{cov}(\mathbf{x}, \mathbf{y})+\operatorname{cov}(\mathbf{y}, \mathbf{x})=2 \operatorname{cov}(\mathbf{y})$.

- Solution to Ex. 0.14
(a) $\operatorname{cov}(\mathbf{x}+\mathbf{y})=\operatorname{cov}(\mathbf{x})+\operatorname{cov}(\mathbf{y})+\operatorname{cov}(\mathbf{x}, \mathbf{y})+\operatorname{cov}(\mathbf{y}, \mathbf{x})=\operatorname{cov}(\mathbf{x})+\operatorname{cov}(\mathbf{y})$ \Longleftrightarrow $\operatorname{cov}(\mathbf{x}, \mathbf{y})=-\operatorname{cov}(\mathbf{y}, \mathbf{x}) \Longleftrightarrow \boldsymbol{\Sigma}_{\mathbf{x y}}=-\boldsymbol{\Sigma}_{\mathbf{x y}}^{\prime}$.
(b) $\operatorname{cov}(\mathbf{x}-\mathbf{y})=\operatorname{cov}(\mathbf{x})+\operatorname{cov}(\mathbf{y})-\operatorname{cov}(\mathbf{x}, \mathbf{y})-\operatorname{cov}(\mathbf{y}, \mathbf{x})=\operatorname{cov}(\mathbf{x})-\operatorname{cov}(\mathbf{y})$ \Longleftrightarrow
$-\operatorname{cov}(\mathbf{y})=\operatorname{cov}(\mathbf{y})-\operatorname{cov}(\mathbf{x}, \mathbf{y})-\operatorname{cov}(\mathbf{y}, \mathbf{x})$
\Longleftrightarrow
$\operatorname{cov}(\mathbf{x}, \mathbf{y})+\operatorname{cov}(\mathbf{y}, \mathbf{x})=2 \operatorname{cov}(\mathbf{y})$.
0.24. Consider the set of numbers $\mathcal{A}=\{1,2, \ldots, N\}$ and let $x_{1}, x_{2}, \ldots, x_{p}$ denote a random sample selected without a replacement from \mathcal{A}. Denote $y=x_{1}+x_{2}+\cdots+x_{p}=\mathbf{1}_{p}^{\prime} \mathbf{x}$. Confirm the following:
(a) $\operatorname{var}\left(x_{i}\right)=\frac{N^{2}-1}{12}, \quad \operatorname{cor}\left(x_{i}, x_{j}\right)=-\frac{1}{N-1}=\varrho, \quad i, j=1, \ldots, p$,
(b) $\operatorname{cor}^{2}\left(x_{1}, y\right)=\operatorname{cor}^{2}\left(x_{1}, x_{1}+\cdots+x_{p}\right)=\frac{1}{p}+\left(1-\frac{1}{p}\right) \varrho$.

See also Section 10.6 (p. 234).

- Solution to Ex. 0.24

Clearly each x_{i} follows a discrete uniform distribution, $\operatorname{Unif}(1, \ldots, N)$, so that

$$
\mathrm{E}\left(x_{i}\right)=\frac{1}{N}(1+2+\cdots+N)=\frac{N+1}{2}:=\mu
$$

and the variance is

$$
\operatorname{var}\left(x_{i}\right)=\frac{1}{N} \sum_{i=1}^{N}(i-\mu)^{2}=\frac{1}{N} \sum_{i=1}^{N} i^{2}-\mu^{2}=\frac{N^{2}-1}{12}:=\sigma^{2}
$$

where we have used the fact

$$
\sum_{i=1}^{N} i^{2}=\frac{N(N+1)(2 N+1)}{6}
$$

We will next show that

$$
\begin{gathered}
\operatorname{cov}\left(x_{i}, x_{j}\right)=-\frac{1}{N-1} \frac{N^{2}-1}{12}=-\frac{1}{N-1} \sigma^{2}=-\frac{N+1}{12} \\
\operatorname{cor}\left(x_{i}, x_{j}\right)=\frac{-\frac{1}{N-1} \sigma^{2}}{\sigma \cdot \sigma}=-\frac{1}{N-1}:=\varrho, \quad i \neq j .
\end{gathered}
$$

For convenience, let $z_{1}, z_{2}, \ldots, z_{p}$ denote a random sample selected with a replacement from $\{1,2, \ldots, N\}$. Because z_{i} and $z_{j}(i \neq j)$ are uncorrelated we trivially have

$$
\operatorname{cov}\left(z_{i}, z_{j}\right)=\frac{1}{N^{2}} \sum_{k=1}^{N} \sum_{\ell=1}^{N}\left(k-\mu_{y}\right)\left(\ell-\mu_{y}\right):=\frac{1}{N^{2}} \mathrm{SP}_{z_{i} z_{j}}=0
$$

In view of

$$
\operatorname{cov}\left(x_{i}, x_{j}\right)=\frac{1}{N(N-1)} \sum_{k=1}^{N} \sum_{\substack{\ell=1 \\ k \neq \ell}}^{N}\left(k-\mu_{y}\right)\left(\ell-\mu_{y}\right):=\frac{1}{N(N-1)} \mathrm{SP}_{x_{i} x_{j}}
$$

we get

$$
\begin{aligned}
& \mathrm{SP}_{x_{i} x_{j}}=\mathrm{SP}_{z_{i} z_{j}}-\sum_{k=1}^{N}\left(k-\mu_{y}\right)^{2}=0-N \sigma^{2}=-N \frac{N^{2}-1}{12} \\
& \operatorname{cov}\left(x_{i}, x_{j}\right)=-\frac{1}{N(N-1)} N \frac{N^{2}-1}{12}=-\frac{N+1}{12} \\
& \operatorname{cor}\left(x_{i}, x_{j}\right)=-\frac{(N+1) / 12}{\left(N^{2}-1\right) / 12}=-\frac{1}{N-1}=\varrho
\end{aligned}
$$

If $y=x_{1}+\cdots+x_{p}=\mathbf{1}^{\prime} \mathbf{x}$, then

$$
\operatorname{cor}^{2}\left(x_{1}, y\right)=\operatorname{cor}^{2}\left(x_{1}, x_{1}+\cdots+x_{p}\right)=\frac{\operatorname{cov}^{2}\left(x_{1}, y\right)}{\operatorname{var}\left(x_{1}\right) \operatorname{var}(y)} .
$$

Now

$$
\begin{aligned}
\operatorname{var}\left(x_{i}\right) & =\frac{N^{2}-1}{12}=\sigma^{2}, \quad i=1, \ldots, p \\
\operatorname{var}(y) & =\operatorname{var}\left(\mathbf{1}^{\prime} \mathbf{x}\right)=\mathbf{1}^{\prime} \operatorname{cov}(\mathbf{x}) \mathbf{1}=\mathbf{1}^{\prime} \boldsymbol{\Sigma} \mathbf{1}
\end{aligned}
$$

where

$$
\begin{gathered}
\operatorname{cov}(\mathbf{x})=\boldsymbol{\Sigma}=\sigma^{2}\left(\begin{array}{cccc}
1 & \varrho & \ldots & \varrho \\
\varrho & 1 & \ldots & \varrho \\
\vdots & \vdots & \ddots & \vdots \\
\varrho & \varrho & \ldots & 1
\end{array}\right) \in \mathbb{R}^{p \times p}, \\
\operatorname{cor}\left(x_{i}, x_{j}\right)=\varrho=\frac{\sigma_{i j}}{\sigma_{i} \sigma_{j}}=\frac{\sigma_{i j}}{\sigma^{2}} \Longrightarrow \sigma_{i j}=\sigma^{2} \varrho .
\end{gathered}
$$

Hence

$$
\operatorname{var}(y)=\mathbf{1}^{\prime} \boldsymbol{\Sigma} \mathbf{1}=p \sigma^{2}[1+(p-1) \varrho]
$$

Moreover,

$$
\begin{aligned}
\operatorname{cov}\left(x_{1}, y\right) & =\operatorname{cov}\left(x_{1}, x_{1}+\cdots+x_{p}\right) \\
& =\operatorname{cov}\left(x_{1}, x_{1}\right)+\operatorname{cov}\left(x_{1}, x_{2}\right)+\cdots+\operatorname{cov}\left(x_{1}, x_{p}\right) \\
& =\sigma^{2}+\sigma_{12}+\cdots+\sigma_{1 p} \\
& =\sigma^{2}[1+(p-1) \varrho]
\end{aligned}
$$

and thereby

$$
\begin{aligned}
\operatorname{cor}^{2}\left(x_{1}, y\right) & =\frac{\left.\sigma^{4}[1+(p-1) \varrho)\right]^{2}}{\sigma^{2} \cdot p \sigma^{2}[1+(p-1) \varrho]} \\
& =\frac{1}{p}+\frac{p-1}{p} \varrho \\
& =\frac{1}{p}+\left(1-\frac{1}{p}\right) \varrho
\end{aligned}
$$

$\mathbf{0 . 2 5}$ (Hotelling's T^{2}). Let \mathbf{U}_{1}^{\prime} and \mathbf{U}_{2}^{\prime} be independent random samples from $\mathrm{N}_{p}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}\right)$ and $\mathrm{N}_{p}\left(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}\right)$, respectively. Denote $\mathbf{T}_{i}=\mathbf{U}_{i}^{\prime}\left(\mathbf{I}_{n_{i}}-\mathbf{J}_{n_{i}}\right) \mathbf{U}_{i}$, and $\mathbf{S}_{*}=\frac{1}{f}\left(\mathbf{T}_{1}+\mathbf{T}_{2}\right)$, where $f=n_{1}+n_{2}-2$. Confirm that

$$
\begin{equation*}
T^{2}=\frac{n_{1} n_{2}}{n_{1}+n_{2}}\left(\overline{\mathbf{u}}_{1}-\overline{\mathbf{u}}_{2}\right)^{\prime} \mathbf{S}_{*}^{-1}\left(\overline{\mathbf{u}}_{1}-\overline{\mathbf{u}}_{2}\right) \sim \mathrm{T}^{2}\left(p, n_{1}+n_{2}-2\right) \tag{a}
\end{equation*}
$$

where $\mathrm{T}^{2}(a, b)$ refers to the Hotelling's T^{2} distribution; see 0.128) (p. 26). It can be shown that if $\boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}$, then

$$
\begin{equation*}
\frac{n_{1}+n_{2}-p-1}{\left(n_{1}+n_{2}-2\right) p} T^{2} \sim \mathrm{~F}\left(p, n_{1}+n_{2}-p-1\right) \tag{b}
\end{equation*}
$$

Notice: In (a) we should actually assume that $\boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}$.

- Solution to Ex. 0.25

Recall the Wishart distribution and Hotelling's T^{2} distribution:

- Let $\mathbf{U}^{\prime}=\left(\mathbf{u}_{(1)}: \ldots: \mathbf{u}_{(n)}\right)$ be a random sample from $\mathrm{N}_{p}(\mathbf{0}, \boldsymbol{\Sigma})$, i.e., $\mathbf{u}_{(i)}$'s are independent and each $\mathbf{u}_{(i)} \sim \mathrm{N}_{p}(\mathbf{0}, \boldsymbol{\Sigma})$. Then $\mathbf{W}=\mathbf{U}^{\prime} \mathbf{U}=$ $\sum_{i=1}^{n} \mathbf{u}_{(i)} \mathbf{u}_{(i)}^{\prime}$ is said to a have a Wishart distribution with n degrees of freedom and scale matrix $\boldsymbol{\Sigma}$, and we write $\mathbf{W} \sim \mathrm{W}_{p}(n, \boldsymbol{\Sigma})$.
- Let \mathbf{U}^{\prime} be a random sample from $\mathrm{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then $\overline{\mathbf{u}}=\frac{1}{n} \mathbf{U}^{\prime} \mathbf{1}_{n}$ and $\mathbf{T}=$ $\mathbf{U}^{\prime}(\mathbf{I}-\mathbf{J}) \mathbf{U}$ are independent and $\mathbf{T} \sim \mathrm{W}_{p}(n-1, \boldsymbol{\Sigma})$.
- Suppose $\mathbf{v} \sim \mathrm{N}_{p}(\mathbf{0}, \boldsymbol{\Sigma}), \mathbf{W} \sim \mathrm{W}_{p}(m, \boldsymbol{\Sigma})$, \mathbf{v} and \mathbf{W} are independent, and that Σ^{6} is positive definite. Hotelling's T^{2} distribution is the distribution of

$$
\begin{equation*}
T^{2}=m \cdot \mathbf{v}^{\prime} \mathbf{W}^{-1} \mathbf{v}=\mathbf{v}^{\prime}\left(\frac{1}{m} \mathbf{W}\right)^{-1} \mathbf{v} \tag{c}
\end{equation*}
$$

and is denoted as $T^{2} \sim \mathrm{~T}^{2}(p, m)$.
In the situation of Ex. $0.25 \mathbf{T}_{1} \sim \mathrm{~W}_{p}\left(n_{1}-1, \boldsymbol{\Sigma}\right)$ and $\mathbf{T}_{2} \sim \mathrm{~W}_{p}\left(n_{2}-1, \boldsymbol{\Sigma}\right)$ and \mathbf{T}_{1} and \mathbf{T}_{2} are independent. Hence it is easy to conclude (at least easy to believe ...) that their sum has property

$$
\mathbf{T}_{1}+\mathbf{T}_{2} \sim \mathrm{~W}_{p}\left(n_{1}+n_{2}-2, \boldsymbol{\Sigma}\right)
$$

Suppose that $\boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}$. Then the difference $\overline{\mathbf{u}}_{1}-\overline{\mathbf{u}}_{2}$ obviously has the distribution

$$
\overline{\mathbf{u}}_{1}-\overline{\mathbf{u}}_{2} \sim \mathrm{~N}_{p}\left(\mathbf{0}, \frac{1}{n_{1}} \boldsymbol{\Sigma}+\frac{1}{n_{2}} \boldsymbol{\Sigma}\right)=\mathrm{N}_{p}\left(\mathbf{0}, \frac{n_{1}+n_{2}}{n_{1} n_{2}} \boldsymbol{\Sigma}\right)
$$

and thereby

$$
\sqrt{\frac{n_{1} n_{2}}{n_{1}+n_{2}}}\left(\overline{\mathbf{u}}_{1}-\overline{\mathbf{u}}_{2}\right) \sim \mathrm{N}_{p}(\mathbf{0}, \boldsymbol{\Sigma}) .
$$

[^0]Substituting

$$
\begin{aligned}
\mathbf{v} & =\sqrt{\frac{n_{1} n_{2}}{n_{1}+n_{2}}}\left(\overline{\mathbf{u}}_{1}-\overline{\mathbf{u}}_{2}\right) \\
\mathbf{W} & =\mathbf{T}_{1}+\mathbf{T}_{2}, \quad m=n_{1}+n_{2}-2
\end{aligned}
$$

into (c) yields (a).
For further details concerning the testing of hypothesis $\boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}$, see pages 233-234.
0.26 (Continued ...). Show that if $n_{1}=1$, then the Hotelling's T^{2} becomes

$$
T^{2}=\frac{n_{2}}{n_{2}+1}\left(\mathbf{u}_{(1)}-\overline{\mathbf{u}}_{2}\right)^{\prime} \mathbf{S}_{2}^{-1}\left(\mathbf{u}_{(1)}-\overline{\mathbf{u}}_{2}\right) .
$$

- Solution to Ex. 0.26

Now we have only one observation $\mathbf{u}_{(1)}$ from population 1 and n_{2} observations from population 2 and

$$
\mathbf{S}_{2}=\frac{1}{n_{2}-1} \mathbf{T}_{2}
$$

Hotelling's T^{2} becomes

$$
\begin{aligned}
T^{2} & =\frac{n_{1} n_{2}}{n_{1}+n_{2}}\left(\overline{\mathbf{u}}_{1}-\overline{\mathbf{u}}_{2}\right)^{\prime} \mathbf{S}_{*}^{-1}\left(\overline{\mathbf{u}}_{1}-\overline{\mathbf{u}}_{2}\right) \\
& =\frac{n_{2}}{n_{2}+1}\left(\mathbf{u}_{(1)}-\overline{\mathbf{u}}_{2}\right)^{\prime} \mathbf{S}_{2}^{-1}\left(\mathbf{u}_{(1)}-\overline{\mathbf{u}}_{2}\right) \sim \mathrm{T}^{2}\left(p, n_{2}-1\right) .
\end{aligned}
$$

If $\boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}$, then

$$
\frac{n_{1}+n_{2}-p-1}{\left(n_{1}+n_{2}-2\right) p} T^{2} \sim \mathrm{~F}\left(p, n_{1}+n_{2}-p-1\right)
$$

which in this case becomes

$$
\begin{gather*}
\frac{n_{2}-p}{\left(n_{2}-1\right) p} T^{2} \sim \mathrm{~F}\left(p, n_{2}-p\right) \\
\frac{n_{2}\left(n_{2}-p\right)}{\left(n_{2}^{2}-1\right) p}\left(\mathbf{u}_{(1)}-\overline{\mathbf{u}}_{2}\right)^{\prime} \mathbf{S}_{2}^{-1}\left(\mathbf{u}_{(1)}-\overline{\mathbf{u}}_{2}\right) \sim \mathrm{F}\left(p, n_{2}-p\right) . \tag{a}
\end{gather*}
$$

Notice: We can denote

$$
\begin{equation*}
\left(\mathbf{u}_{(1)}-\overline{\mathbf{u}}_{2}\right)^{\prime} \mathbf{S}_{2}^{-1}\left(\mathbf{u}_{(1)}-\overline{\mathbf{u}}_{2}\right)=\operatorname{MHLN}^{2}\left(\mathbf{u}_{(1)}, \overline{\mathbf{u}}_{2}, \mathbf{S}_{2}\right) \tag{b}
\end{equation*}
$$

Above $\overline{\mathbf{u}}_{2}$ and \mathbf{S}_{2} are being calculated from the sample \mathbf{U}_{2} while the single observation $\mathbf{u}_{(1)}$ does not belong to this sample. The resulting Mahalanobis distance in (b) differs from the "usual" Mahalanobis distance (squared)

$$
\begin{equation*}
\left(\mathbf{u}_{(i)}-\overline{\mathbf{u}}\right)^{\prime} \mathbf{S}^{-1}\left(\mathbf{u}_{(i)}-\overline{\mathbf{u}}\right)=\operatorname{MHLN}^{2}\left(\mathbf{u}_{(i)}, \overline{\mathbf{u}}, \mathbf{S}\right) \tag{c}
\end{equation*}
$$

where $\mathbf{u}_{(i)}$ is one observation in the data matrix $\mathbf{U}, \mathbf{S}=\operatorname{cov}_{\mathrm{d}}(\mathbf{U})$, and $\overline{\mathbf{u}}=$ $\mathbf{U}^{\prime} \mathbf{1}_{n} / n$.

Problem: Try to compare (b) and (c).

- - If $n_{1}=1$ and also $p=1$, then (a) becomes

$$
\frac{n_{2}\left(n_{2}-1\right)}{n_{2}^{2}-1}\left(u_{1}-\bar{u}_{2}\right) s_{2}^{-2}\left(u_{1}-\bar{u}_{2}\right)=\frac{n_{2}}{n_{2}+1} \frac{\left(u_{1}-\bar{u}_{2}\right)^{2}}{s_{2}^{2}} \sim \mathrm{~F}\left(1, n_{2}-1\right)
$$

where \bar{u}_{2} and s_{2}^{2} are calculated from the "second" sample. A clearer notation can be obtained from Exercise 8.9 (p. 186) which expresses the square root of the above test statistics as

$$
\begin{aligned}
t & =\frac{y_{n}-\bar{y}_{(n)}}{s_{(n)} / \sqrt{1-\frac{1}{n}}}=\sqrt{\frac{n-1}{n}} \frac{y_{n}-\bar{y}_{(n)}}{s_{(n)}} \\
& =\frac{y_{n}-\bar{y}}{s_{(n)} \sqrt{1-\frac{1}{n}}}=\sqrt{\frac{n}{n-1}} \frac{y_{n}-\bar{y}}{s_{(n)}}
\end{aligned}
$$

where $\bar{y}_{(n)}$ is the mean of y_{1}, \ldots, y_{n-1} and $s_{(n)}$ their standard deviation; \bar{y} is the mean of all y_{i} 's. This t-test statistic is the externally Studentized residual.

- If $p=1$ then, using the notation of Exercise 8.12 (p. 187), Hotelling's T^{2} becomes

$$
\begin{aligned}
T^{2} & =\frac{n_{1} n_{2}}{n_{1}+n_{2}}\left(\overline{\mathbf{u}}_{1}-\overline{\mathbf{u}}_{2}\right)^{\prime} \mathbf{S}_{*}^{-1}\left(\overline{\mathbf{u}}_{1}-\overline{\mathbf{u}}_{2}\right) \\
& =\frac{n_{1} n_{2}}{n_{1}+n_{2}} \cdot\left(\bar{y}_{1}-\bar{y}_{2}\right) \cdot\left(\frac{\mathrm{SS}_{1}+\mathrm{SS}_{2}}{n_{1}+n_{2}-2}\right)^{-1} \cdot\left(\bar{y}_{1}-\bar{y}_{2}\right) \sim \mathrm{T}^{2}\left(1, n_{1}+n_{2}-2\right),
\end{aligned}
$$

and the Hotelling's T^{2} is precisely the F-test statistics for the hypothesis $\mu_{1}=\mu_{2}$:

$$
\begin{aligned}
T^{2} & =F \\
& =\frac{n_{1} n_{2}}{n_{1}+n_{2}} \cdot\left(\bar{y}_{1}-\bar{y}_{2}\right) \cdot\left(\frac{\mathrm{SS}_{1}+\mathrm{SS}_{2}}{n_{1}+n_{2}-2}\right)^{-1} \cdot\left(\bar{y}_{1}-\bar{y}_{2}\right) \\
& =\frac{\left(\bar{y}_{1}-\bar{y}_{2}\right)^{2}}{\frac{\mathrm{SS}_{1}+\mathrm{SS}_{2}}{n_{1}+n_{2}-2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}=\frac{n_{1}\left(\bar{y}_{1}-\bar{y}\right)^{2}+n_{2}\left(\bar{y}_{2}-\bar{y}\right)^{2}}{\frac{\mathrm{SS}_{1}+\mathrm{SS}_{2}}{n_{1}+n_{2}-2}} \\
& =\frac{\left(\bar{y}_{1}-\bar{y}_{2}\right)^{2}}{\frac{\mathrm{SSE}}{n-2} \frac{n_{1}+n_{2}}{n_{1} n_{2}}} \sim \mathrm{~F}\left(1, n_{1}+n_{2}-2\right)=\mathrm{t}^{2}\left(n_{1}+n_{2}-2\right) .
\end{aligned}
$$

- If \mathbf{U}^{\prime} is a random sample from $\mathrm{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then
- Hotelling's $T^{2}: T^{2}=n\left(\overline{\mathbf{u}}-\boldsymbol{\mu}_{0}\right)^{\prime} \mathbf{S}^{-1}\left(\overline{\mathbf{u}}-\boldsymbol{\mu}_{0}\right)=n \cdot \operatorname{MHLN}^{2}\left(\overline{\mathbf{u}}, \boldsymbol{\mu}_{0}, \mathbf{S}\right)$,

$$
\frac{n-p}{(n-1) p} T^{2} \sim \mathrm{~F}(p, n-p, \theta), \quad \theta=n\left(\boldsymbol{\mu}-\boldsymbol{\mu}_{0}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}-\boldsymbol{\mu}_{0}\right) .
$$

- Hypothesis $\boldsymbol{\mu}=\boldsymbol{\mu}_{0}$ is rejected at risk level α, if

$$
n\left(\overline{\mathbf{u}}-\boldsymbol{\mu}_{0}\right)^{\prime} \mathbf{S}^{-1}\left(\overline{\mathbf{u}}-\boldsymbol{\mu}_{0}\right)>\frac{p(n-1)}{n-p} F_{\alpha ; p, n-p}
$$

- A $100(1-\alpha) \%$ confidence region for the mean of the $\mathrm{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is the ellipsoid determined by all $\boldsymbol{\mu}$ such that

$$
n(\overline{\mathbf{u}}-\boldsymbol{\mu})^{\prime} \mathbf{S}^{-1}(\overline{\mathbf{u}}-\boldsymbol{\mu}) \leq \frac{p(n-1)}{n-p} F_{\alpha ; p, n-p}
$$

[^0]: ${ }^{6}$ In the Tricks Book here is erroneously \mathbf{W}.

