1.4 Exercises: Some Solutions (November 3, 2011)

1.1. Consider the matrix $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Let the elements of \mathbf{A} be independent observations from the random variable x. What is your guess for the rank of \mathbf{A} if x follows
(a) uniform discrete distribution, values being the digits $0,1, \ldots, 9$,
(b) uniform continuous distribution, values being from the interval $[0,1]$,
(c) Bernoulli distribution: $\mathrm{P}(x=1)=p, \mathrm{P}(x=0)=1-p=q$.

- Solution to Ex. 1.1
(a) $\mathrm{P}[\operatorname{rk}(\mathbf{A})=0]=1 / 10^{4}$,
$\mathrm{P}[\operatorname{rk}(\mathbf{A})=1]=\mathrm{P}[\operatorname{det}(\mathbf{A})=0]-\mathrm{P}[\operatorname{rk}(\mathbf{A})=0]=$ small, $\mathrm{P}[\operatorname{rk}(\mathbf{A})=2]=$ high.
(b) $\mathrm{P}[\operatorname{rk}(\mathbf{A})=2]=$ high.
(c) $\mathrm{P}[\operatorname{rk}(\mathbf{A})=0]=q^{4}$,
$\mathrm{P}[\operatorname{rk}(\mathbf{A})=1]=p^{4}+4 p^{2} q^{2}+4 p q^{3}$, $\mathrm{P}[\operatorname{rk}(\mathbf{A})=2]=2 p^{2} q^{2}+4 p^{3} q$.
1.2. Consider the nonnull vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$. Prove:

$$
\mathbf{P}_{\mathbf{u}} \mathbf{P}_{\mathbf{v}}=\mathbf{P}_{\mathbf{v}} \mathbf{P}_{\mathbf{u}} \Longleftrightarrow \mathbf{u}=\lambda \mathbf{v} \text { for some } \lambda \in \mathbb{R} \text { or } \mathbf{u}^{\prime} \mathbf{v}=0
$$

- Solution to Ex. 1.2

Denote $\mathbf{u}^{\prime} \mathbf{u}=a, \mathbf{v}^{\prime} \mathbf{v}=b$ and $\mathbf{u}^{\prime} \mathbf{v}=c$. Then

$$
\begin{aligned}
\mathbf{P}_{\mathbf{u}} \mathbf{P}_{\mathbf{v}}=\mathbf{P}_{\mathbf{v}} \mathbf{P}_{\mathbf{u}} & \Longleftrightarrow \frac{\mathbf{u u}^{\prime} \mathbf{v v}^{\prime}}{a b}=\frac{\mathbf{v v}^{\prime} \mathbf{u} \mathbf{u}^{\prime}}{a b} \Longleftrightarrow \mathbf{u v}^{\prime} c=\mathbf{v u}^{\prime} c \\
& \Longleftrightarrow \mathbf{u v}^{\prime}=\mathbf{v u}^{\prime} \text { or } c=0
\end{aligned}
$$

Postmultiplying $\mathbf{u} \mathbf{v}^{\prime}=\mathbf{v} \mathbf{u}^{\prime}$ by \mathbf{v} yields

$$
\mathbf{u}=\frac{\mathbf{v} \mathbf{u}^{\prime} \mathbf{u}}{b}=\frac{a}{b} \mathbf{v}:=\alpha \mathbf{v}
$$

Trivially $\mathbf{u}=\lambda \mathbf{v}$ for some $\lambda \Longrightarrow \mathbf{u v}^{\prime}=\mathbf{v u}^{\prime}$.
1.3. Prove Proposition 1.2 (p. 68): $\binom{\mathbf{I}_{n}}{-\mathbf{B}^{\prime}} \in\left\{\binom{\mathbf{B}_{n \times q}}{\mathbf{I}_{q}}^{\perp}\right\}$.

- Solution to Ex. 1.3

Equation

$$
\binom{\mathbf{B}_{n \times q}}{\mathbf{I}_{q}}^{\prime}\binom{\mathbf{I}_{n}}{-\mathbf{B}^{\prime}}=\left(\mathbf{B}_{n \times q}^{\prime}: \mathbf{I}_{q}\right)\binom{\mathbf{I}_{n}}{-\mathbf{B}^{\prime}}=\mathbf{0}
$$

implies

$$
\mathscr{C}\binom{\mathbf{I}_{n}}{-\mathbf{B}^{\prime}} \subset \mathscr{C}\binom{\mathbf{B}_{n \times q}}{\mathbf{I}_{q}}^{\perp}
$$

It remains to show that the dimensions in the above inclusion are the same. This is true in view of

$$
\begin{gathered}
\operatorname{rk}\binom{\mathbf{I}_{n}}{-\mathbf{B}^{\prime}}=\operatorname{rk}\left(\mathbf{I}_{n}:-\mathbf{B}\right)=n \\
\operatorname{rk}\binom{\mathbf{B}_{n \times q}}{\mathbf{I}_{q}}^{\perp}=(n+q)-\operatorname{rk}\binom{\mathbf{B}_{n \times q}}{\mathbf{I}_{q}}=(n+q)-\operatorname{rk}\left(\mathbf{B}_{n \times q}^{\prime}: \mathbf{I}_{q}\right)=n
\end{gathered}
$$

1.4. Show that the matrices \mathbf{A} and \mathbf{A}^{\prime} have the same maximal number of linearly independent columns.
Hint: Utilize the full rank decomposition of A, Theorem 17 (p. 349).
1.5. Consider an $n \times p$ matrix \mathbf{A} which has full column rank. Confirm that the columns of $\mathbf{A}\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1 / 2}$ form an orthonormal basis for $\mathscr{C}(\mathbf{A})$.
Hint: Recall that $\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1 / 2}=\mathbf{T} \mathbf{\Lambda}^{-1 / 2} \mathbf{T}^{\prime}$, where $\mathbf{A}^{\prime} \mathbf{A}=\mathbf{T} \boldsymbol{\Lambda} \mathbf{T}^{\prime}$ is the eigenvalue decomposition of $\mathbf{A}^{\prime} \mathbf{A}$.

- Solution to Ex. 1.5

The columns of $\mathbf{A}\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1 / 2}$ are orthonormal since

$$
\begin{aligned}
{\left[\mathbf{A}\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1 / 2}\right]^{\prime} \mathbf{A}\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1 / 2} } & =\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1 / 2} \mathbf{A}^{\prime} \mathbf{A}\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1 / 2} \\
& =\mathbf{T} \mathbf{\Lambda}^{-1 / 2} \mathbf{T}^{\prime} \mathbf{T} \mathbf{\Lambda} \mathbf{T}^{\prime} \mathbf{T} \mathbf{\Lambda}^{-1 / 2} \mathbf{T}^{\prime}=\mathbf{I}_{p}
\end{aligned}
$$

Obviously $\mathscr{C}\left[\mathbf{A}\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1 / 2}\right]=\mathscr{C}(\mathbf{A})$ because for any nonsingular \mathbf{B} we have $\mathscr{C}(\mathbf{A B})=\mathscr{C}(\mathbf{A})$.
1.6. Let $\operatorname{rank}\left(\mathbf{A}_{n \times p}\right)=a$ and $\operatorname{rank}\left(\mathbf{B}_{n \times q}\right)=b$. Show that the statements
(a) $\mathscr{C}(\mathbf{A}) \cap \mathscr{C}(\mathbf{B})=\{\mathbf{0}\} \quad$ and $\quad(\mathrm{b}) \mathscr{C}(\mathbf{A})^{\perp} \cap \mathscr{C}(\mathbf{B})^{\perp}=\{\mathbf{0}\}$ are equivalent if and only if $\operatorname{rank}(\mathbf{B})=\operatorname{rank}\left(\mathbf{A}^{\perp}\right)=n-\operatorname{rank}(\mathbf{A})$.
1.7. Show that for conformable matrices \mathbf{A}, \mathbf{B} and \mathbf{Z} the following holds:

$$
\mathscr{C}(\mathbf{A}) \subset \mathscr{C}(\mathbf{B}: \mathbf{Z}) \& \mathscr{C}(\mathbf{B}) \subset \mathscr{C}(\mathbf{A}: \mathbf{Z}) \Longleftrightarrow \mathscr{C}(\mathbf{A}: \mathbf{Z})=\mathscr{C}(\mathbf{B}: \mathbf{Z})
$$

- Solution to Ex. 1.7

Suppose the left-hand side is true. Then

$$
\begin{aligned}
\mathscr{C}(\mathbf{A}: \mathbf{Z}) & =\mathscr{C}(\mathbf{A})+\mathscr{C}(\mathbf{Z}) \subset[\mathscr{C}(\mathbf{B})+\mathscr{C}(\mathbf{Z})]+\mathscr{C}(\mathbf{Z})=\mathscr{C}(\mathbf{B})+\mathscr{C}(\mathbf{Z}) \\
& \subset[\mathscr{C}(\mathbf{A})+\mathscr{C}(\mathbf{Z})]+\mathscr{C}(\mathbf{Z})=\mathscr{C}(\mathbf{A})+\mathscr{C}(\mathbf{Z}),
\end{aligned}
$$

and so all inclusions above become equalities; in particular

$$
\mathscr{C}(\mathbf{A}: \mathbf{Z})=\mathscr{C}(\mathbf{B}: \mathbf{Z}) .
$$

The proof of the reverse relation is obvious.

