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2.6 Exercises: Some Solutions (September 13, 2012)

2.1. Prove the equivalence of statements (f), (g) and (h) of Proposition 2.6.

(f) (1) C (P∗) = C (A), (2) P′∗V(In −P∗) = 0.
(g) (3) C (P∗) = C (A), (4) P2

∗ = P∗, (5) (VP∗)′ = VP∗.
(h) (6) C (P∗) = C (A), (7) Rn = C (P∗)� C (In −P∗); here � refers

to the orthogonality with respect to the given inner product.

• Solution to Ex. 2.1:

Parts (1) and (2) imply trivially (3) and (5). Writing (2) as

P′∗V = P∗VP∗ = VP∗ (∗)

and postmultiplying (∗) by P∗ yields

P′∗VP∗ = P∗VP2
∗ = VP2

∗

which further implies
VP∗ = VP2

∗ .

Premultiplying the above equation by V−1 gives (4) and so the implication
(f) =⇒ (g) is proved. The reverse relation (g) =⇒ (f) is easy to confirm.

Part (7) implies that P′∗V(In −P∗) = 0 and so (h) =⇒ (f); thereby also
(h) =⇒ (g). It remains to show that (f) [or equivalently (g)] =⇒ (h). Now
in view of (0.39) (p. 10) the idempotency (4) P2

∗ = P∗ means that

Rn = C (P∗)⊕ C (In −P∗) .

The condition (2) indicates that above ⊕ becomes �. �

2.2. Prove the statements in (2.121) (p. 88).

2.3. [Equality of two projectors under different inner products] Suppose that
V1 and V2 are positive definite n×nmatrices and rank(Xn×p) = r. Prove
the equivalence of the following statements:

(a) PX;V−1
1

= PX;V−1
2

, (b) X′V−1
2 PX;V−1

1
= X′V−1

2 ,

(c) P′X;V−1
1

V−1
2 PX;V−1

1
= V−1

2 PX;V−1
1

, (d) V−1
2 PX;V−1

1
is symmet-

ric,
(e) C (V−1

1 X) = C (V−1
2 X) , (f) C (V1X⊥) = C (V2X⊥) ,
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(g) C (V2V−1
1 X) = C (X) , (h) X′V−1

1 V2M = 0 ,
(i) C (V−1/2

1 V2V−1/2
1 ·V−1/2

1 X) = C (V−1/2
1 X) ,

(j) C (V−1/2
1 X) has a basis U = (u1 : . . . : ur) comprising a set of r

eigenvectors of V−1/2
1 V2V−1/2

1 ,
(k) V−1/2

1 X = UA for some Ar×p, rank(A) = r,
(l) X = V1/2

1 UA; the columns of V1/2
1 U are r eigenvectors of V2V−1

1 ,
(m) C (X) has a basis comprising a set of r eigenvectors of V2V−1

1 .

Some statements above can be conveniently proved using Proposition 10.1
(p. 222). See also Section 11.1 (p. 275), Exercise 11.9 (p. 288), and (18.81)
(p. 388).

Thomas (1968), Harville (1997, p. 265), Tian & Takane (2008b, 2009b),
Hauke, Markiewicz & Puntanen (2011).

• Solution to Ex. 2.3:

We have to study the equality

X(X′V−1
1 X)−X′V−1

1 = X(X′V−1
2 X)−X′V−1

2 . (a)

Denoting
X∗ = V−1/2

1 X , X = V1/2
1 X∗ ,

(a) becomes

V1/2
1 X∗(X′∗X∗)−X′∗V

−1/2
1 = V1/2

1 X∗(X′∗V
1/2
1 V−1

2 V1/2
1 X∗)−X′∗V

1/2
1 V−1

2 ,

which is equivalent to

X∗(X′∗X∗)−X′∗ = X∗(X′∗V
1/2
1 V−1

2 V1/2
1 X∗)−X′∗V

1/2
1 V−1

2 V1/2
1 ,

PX∗ = X∗(X′∗V−1
∗ X∗)−X′∗V−1

∗ = PX∗;V−1
∗
,

where
V∗ = V−1/2

1 V2V−1/2
1 .

Now the conditions of Proposition 10.1 (p. 218) for the equality of OLSE
and BLUE under the model {y∗,X∗,V∗} can be applied; here y∗ = V−1/2

1 y,
cov(y) = V1.

We can solve (a) also by considering the linear models M1 = {y, Xβ, V1}
and M2 = {y, Xβ, V2}. Now (a) means the equality between the BLUEs
under M1 and M2. Premultiplying M1 and M2 by V−1/2

1 yields the trans-
formed versions of the models M1 and M2:

M ∗
1 = {V−1/2

1 y, V−1/2
1 Xβ, In} = {y∗, X∗β, In} ,

M ∗
2 = {V−1/2

1 y, V−1/2
1 Xβ, V−1/2

1 V2V−1/2
1 } = {y∗, X∗β, V∗} .
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The equality of the BLUEs is equivalent to the equality of the OLSE and
BLUE of Xβ under M ∗

2 and hence, e.g., part (v) of Proposition 10.1 gives
the condition

C (V−1/2
1 V2V−1/2

1 ·V−1/2
1 X) = C (V−1/2

1 X) , i.e., C (V2V−1
1 X) = C (X) .

i.e., C (V2V−1
1 X) = C (X) .

One simple way to find conditions for (a) would be to use Theorem 10 (p.
216). Of course, “simplicity” here is based on the use of a powerful result. In
any event, suppose that we know that PX;V−1

1
y is the BLUE for Xβ under

M2 if and only if
PX;V−1

1
(X : V2M) = (X : 0) .

The X-part above trivially holds and so we are left with

X(X′V−1
1 X)−X′V−1

1 V2M = 0 .

Premultiplying the above equation by X′V−1
1 yields (why?)

X′V−1
1 V2M = 0 ,

i.e.,
C (V2V−1

1 X) ⊂ C (X) .

In view of rk(V2V−1
1 X) = rk(X), we have an equality above. �

2.4 (Continued . . . ). Show that C (V1X) = C (V2X) ; C (V1X⊥) =
C (V2X⊥), but the following statements are equivalent:

(a) C (V1X) = C (X) , (b) C (V1X⊥) = C (X⊥) ,
(c) C (V−1

1 X) = C (X) , (d) C (V−1
1 X⊥) = C (X⊥) .

2.5. Suppose that V is positive definite n×nmatrix and X ∈ Rn×p. Confirm:

PX;V−1 = X(X′V−1X)−X′V−1

= X(X′V−1/2V−1/2X)−X′V−1/2V−1/2

= V1/2PV−1/2XV−1/2

= V1/2(In −P(V−1/2X)⊥)V−1/2

= V1/2(In −PV1/2M)V−1/2

= In −VM(MVM)−M = In −P′M;V .

See also (2.74) (p. 92), Proposition 5.9 (p. 164), and part (i) of Theorem 15
(p. 332).

• Solution to Ex. 2.5:
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PX;V−1 = X(X′V−1X)−X′V−1

= X(X′V−1/2V−1/2X)−X′V−1/2V−1/2

= V1/2V−1/2 ·V−1/2X(X′V−1/2V−1/2X)−X′V−1/2 ·V−1/2

= V1/2PV−1/2XV−1/2

= V1/2(In −P(V−1/2X)⊥)V−1/2

= V1/2(In −PV1/2M)V−1/2

= V1/2[In −V1/2M(MV1/2V1/2M)−MV1/2]V−1/2

= In −VM(MVM)−M
= In −P′M;V .

�

2.6. Suppose that C (A) ∩ C (B) = {0n} = C (C) ∩ C (D). Show that then

{PC|D } ⊂ {PA|B } ⇐⇒ C (A) ⊂ C (C) and C (B) ⊂ C (D) .

Kala (1981, Lemma 2.5).
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