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3.4 Exercises: Some Solutions (November 26, 2011)

3.1. Let U = (1 : x : y) be a 100 × 3 matrix where x and y comprise the
observed values of variables x and y, and assume that s2

x > 0 and s2
y > 0.

(a) Suppose that the columns of U are orthogonal. Show that rxy = 0.
(b) Confirm that if rank(U) = 2, then r2

xy = 1.

• Solution to Ex. 3.1:

(a) U′U = diag(n,x′x,y′y) =⇒ 1′x = 1′y = 0 and so x and y are
centered. Hence rxy = x′y/

√
x′x · y′y, which is 0 because x′y = 0.

(b) rank(U) < 3 =⇒ there exists a = (α, β, γ)′ 6= 0 such that

Ua = α1 + βx + γy = 0 . (∗)

In (∗) necessarily α 6= 0 and β 6= 0 because s2
x > 0 and s2

y > 0. Hence

y = −α
γ

1− β

γ
x := a1 + bx ,

i.e., yi = a+ bxi, i = 1, . . . , n, which trivially means that r2
xy = 1. �

3.2. Let x and y be n-dimensional variable vectors (comprising the observed
values of x an y). Show that

cord(a1 + bx, c1 + dy) =
{

cord(x,y) if bd > 0 ,
− cord(x,y) if bd < 0 ,

or in other notation,

cord [(1 : x) ( ab ) , (1 : y) ( cd )] =
{

rxy if bd > 0 ,
−rxy if bd < 0 .

• Solution to Ex. 3.2:

Denoting u = a1 + bx, v = c1 + dy and C = the centering matrix, yields

u′Cv = bdx′Cy , u′Cu = b2x′Cx , v′Cv = d2y′Cy ,

=⇒ ruv = bdx′Cy
|b||d|√x′Cx · y′Cy

= bd

|bd| rxy . �
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3.3. Consider the 3× 3 data matrix

U = (13 : x : y) =

1 x1 y1
1 x2 y2
1 x3 y3

 .

Confirm that the area of the triangle with vertices (xi, yi), i = 1, 2, 3, is
1
2 |det(U)|∗. Show that det(U) = 0 ⇐⇒ the three data points lie in the
same line, and hence, assuming that x and y have nonzero variances, we
have r2

xy = 1 ⇐⇒ det(U) = 0.
∗ Notice: in the book we have erroneously 1

2 det(U).

• Solution to Ex. 3.3:

Subtracting the first row from the second and third row shows that

|U| =

∣∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 x1 y1
0 x2 − x1 y2 − y1
0 x3 − x1 y3 − y1

∣∣∣∣∣∣ =
∣∣∣∣x2 − x1 y2 − y1
x3 − x1 y3 − y1

∣∣∣∣
= (x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1) . (1)

Consider a triangle OFG, say, in R2, formed by the points 0 = ( 0
0 ), f =

( a1
b1

)
,

and g =
( a2
b2

)
. We will next show that

area(OFG) = 1
2 |det(L)| = 1

2 |a1b2 − a2b1| , (2)

where L =
(
a1 b1
a2 b2

)
=
(

f ′
g′
)
. Proceeding as in Section 5.7, we get

e = (I − Px̃)ỹ ỹ

ŷ = Px̃ỹ x̃
α

Figure 3.6 This is Figure 5.1. Replace here x̃ and ỹ with f and g, respectively.

area2(OFG) = 1
4 ‖f‖2‖e‖2,

where e = (I2 −Pf )g. Now we have
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‖e‖2 = g′(I2 −Pf )g = g′[I2 − f(f ′f)−1f ′]g

= g′g− (f ′g)2

f ′f = g′g[1− cos2(f ,g)] ,

and hence

area2(OFG) = 1
4 f ′f

[
g′g− (f ′g)2

f ′f

]
= 1

4 [f ′f · g′g− (f ′g)2]
= 1

4 |LL′| = 1
4 |L|2,

where L =
(
a1 b1
a2 b2

)
=
(

f ′
g′
)
. Thus (2) is proved.

Let’s go now back to the original problem, i.e., finding the area of the
triangle TUV , say, in R2, formed by the points t = ( x1

y1 ), u = ( x2
y2 ), and

v = ( x3
y3 ). We can move this triangle to the origin by subtracting t from u

and v: u0 = u− t, v0 = v− t, and thus we obtain the triangle OU0V0, whose
area is obviously the absolute value of

1
2

∣∣∣∣u′ − t′
v′ − t′

∣∣∣∣ = 1
2

∣∣∣∣x2 − x1 y2 − y1
x3 − x1 y3 − y1

∣∣∣∣ .
Comment: Very likely there exist proofs simpler than that above.

Consider then the last claim: Show that det(U) = 0 ⇐⇒ the three data
points lie in the same line, and hence, assuming that x and y have nonzero
variances, we have r2

xy = 1 ⇐⇒ det(U) = 0.
Obviously, in view of the nonzero variances, det(U) = 0 ⇐⇒ rk(U) = 2.

Now rk(U) = 2 implies that y = a1 + bx for some a and b (b 6= 0), i.e.,
yi = a+ bxi, i = 1, 2, 3, and hence r2

xy = 1. �

3.4. Consider the variables x1 and x2 and their sum y = x1 + x2. Let the
corresponding variable vectors be y, x1, and x2. Assume that x1 and x2
are centered and of equal length so that x′1x1 = x′2x2 = d2. Show that

vars(y) = 1
n−12d2(1 + r12) , cor2

s (x1, y) = 1
2 (1 + r12) .

Moreover, let u = x1 − Pyx1 and v = x2 − Pyx2. Show that u = −v
and thereby r12·y = cord(u,v) = −1.

• Solution to Ex. 3.4:

In view of x′1x2 = d2r12, we have
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ßy = y′y = x′1x1 + x′2x2 + 2x′1x2

= 2d2 + 2d2r12 = 2d2(1 + r12) ,
SPx1y = x′1y = x′1(x1 + x2) = d2 + d2 r12 = d2(1 + r12) ,

cor2
s (x1, y) = [d2(1 + r12)]2

d2 · 2d2(1 + r12) = 1
2 (1 + r12) .

We observe that u = −v because

u = (I−Py)x1 = (I−Py)(y− x2)
= (I−Py)y− (I−Py)x2

= −(I−Py)x2 = −v .

3.5. Let the variable vectors x and y be centered and of equal length.

(a) What is cors(x− y, x+ y)?
(b) Draw a figure from which you can conclude the result above.
(c) What about if x′x = y′y + 0.001?

• Solution to Ex. 3.5:

Denoting u = x+ y, v = x− y, x′x = a2, y′y = b2, we have

SPuv = (x + y)′(x− y) = x′x− y′y = a2 − b2 ,
ßv = (x− y)′(x− y) = x′x + y′y− 2x′y = a2 + b2 − 2x′y ,
ßu = (x + y)′(x + y) = x′x + y′y + 2x′y = a2 + b2 + 2x′y ,

ruv = a2 − b2√
(a2 + b2 − 2x′y)(a2 + b2 + 2x′y)

.

3.6. Consider the variable vectors x and y which are centered and of unit
length. Let u be the residual when y is explained by x and v be the
residual when x is explained by y. What is the cord(u,v)? Draw a figure
about the situation.

• Solution to Ex. 3.6:
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u = (I−Py)x = (I− yy′)x = x− rxyy ,
v = (I−Px)y = (I− xx′)y = y− rxyx ,

ßu = x′(I− yy′)x = 1− r2
xy ,

ßv = y′(I− xx′)y = 1− r2
xy ,

SPuv = x′(I− yy′)(I− xx′)y
= (x− rxyy)′(y− rxyx)
= rxy − rxy − rxy + r3

xy = −rxy(1− r2
xy) .

Notice that u and v are centered since x and y are centered. �

3.7. Consider the variable vectors x, y and z which are centered and of unit
length and whose correlation matrix is

R =

 1 0 −1/
√

2
0 1 1/

√
2

−1/
√

2 1/
√

2 1

 .

Show that x− y +
√

2z = 0.

• Solution to Ex. 3.7:

Denoting U = (x : y : z) and a = (1,−1,
√

2)′ we have R = U′U and

U′Ua = Ra =

 1 0 −1/
√

2
0 1 1/

√
2

−1/
√

2 1/
√

2 1

 1
−1√

2

 =

0
0
0

 .

Now U′Ua = 0 implies Ua = 0. �

3.8. Consider the 17-dimensional variable vectors x = (1, . . . , 1, 1, 4)′ and
y = (−1, . . . ,−1,−1 + 0.001, 4)′. Find cord(x,y) and cos(x,y).

• Solution to Ex. 3.8:

x′x = 16 + 16 = 32, y′y = 31 + 0.9992, x′y = −16 + 0.001 + 16 = 0.001,
and hence

cos(x,y) ≈ 0.001
32 = 1

3200 .

Correlation rxy ≈ 1, because 16 observations lie on the line y = 5
8 x− 8

3 ; the
observation (1,−0.999) is a bit out of this line. �
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3.9. Suppose that U = (x : y : z) ∈ R100×3 is a data matrix, where the
x-values represent the results of throwing a dice and y-values are obser-
vations from the normal distribution N(0, 1), and z = x + y. What is
your guess for the length of the variable vector z?

• Solution to Ex. 3.9:

Theoretically, µx = 0, µy = 3.5, σ2
x = 1, σ2

y = 35
12 , and hence

1 ≈ s2
x ≈

1
99 x′x =⇒ x′x ≈ 99 ,

35
12 ≈ s

2
y ≈

1
99(y′y− 100 · 3.52) =⇒ y′y ≈ 99 · 35

12 + 100 · 49
4 ,

z′z ≈ x′x + y′y .

3.10. Consider a 3× 3 centering matrix

C =

 2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

 .

Find the following:

(a) a basis for C (C),
(b) orthonormal bases for C (C) and C (C)⊥,
(c) eigenvalues and orthonormal eigenvectors of C,
(d) C+, and C− which has (i) rank 2, (ii) rank 3.

• Solution to Ex. 3.10:

(a) C (C) = {y ∈ R3 : ∃x such that y = Cx}, i.e., C (C) is the set of all
vectors which are centered or in other words, those vectors which satisfy
x′13 = 0, so that C (C) = C (13)⊥. The fact rk(C) = 2 can be concluded
in many ways. For example, we always have

rk(In −PA) = n− rk(A) ,

and so rk(C) = rk(I3 − P1) = 3 − rk(1) = 2 . Any two columns of C
create a basis for C (C) as well as the columns of

A1 =

 2 −1
−1 2
−1 −1

 , A2 =

 1 1
−1 0

0 −1

 .
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(b) B =

−2/
√

6 0
1/
√

6 1/
√

2
1/
√

6 −1/
√

2

 = (b1 : b2) is an orthonormal basis for C (C).

C (C)⊥ = C (13) =⇒ 1√
313 is an orthonormal basis for C (C)⊥.

(c) The eigenvalues of an idempotent matrix P, say, are zeros and ones
(why?) and the number of ones is rk(P). Hence ch(C) = {1, 1, 0}.
• C1 = 0 · 1, and so 1 is an eigenvector of C w.r.t. eigenvalue 0, i.e.,

(0,1) is an eigenpair for C.
• Ct = 1 · t iff t is a centered vector. Hence any centered vector t is an

eigenvector of C w.r.t. eigenvalue 1. For example, the columns of B
in (b) are orthonormal eigenvectors of C w.r.t. eigenvalue 1. We then
have the equation

CB = B . (1)

Postmultiplying (1) by an orthogonal Q2×2 yields

CBQ = BQ ,

which shows that the columns of BQ are also orthonormal eigenvectors
of C w.r.t. eigenvalue 1. Recall that according to Theorem 18 (p. 357)
the following holds for multiple eigenvalues:

• Consider the distinct eigenvalues of A, λ{1} > · · · > λ{s}, and let T{i}
be an n ×mi matrix consisting of the orthonormal eigenvectors cor-
responding to λ{i}; mi is the multiplicity of λ{i}. With this ordering,
Λ is unique and T is unique up to postmultiplying by a blockdiag-
onal matrix U = blockdiag(U1, . . . ,Us), where Ui is an orthogonal
mi ×mi matrix.

(d) C = C+, which is easy to establish; rk(C) = 2, and so C is a generalized
inverse C− which has rank 2.

Denote
T = (t1 : t2 : t3) = (T1 : 1√

313) ,

where T1 = B, as in (b). Then the vectors ti are the orthonormal eigen-
vectors of C and C has the eigenvalue decomposition

C = TΛT′ = T

1 0 0
0 1 0
0 0 0

T′ = T1T′1 = t1t′1 + t2t′2 .

In light of Section 19.5 (pp. 407–408),

T

1 0 a
0 1 b
c d e

T′ ∈ {C−} for all a, b, c, d, e ∈ R . (2)
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In particular,

G = T

1 0 0
0 1 0
0 0 3α

T′ = t1t′1 + t2t′2 + α131′3 ∈ {C−} ,

i.e.,

G = t1t′1 + t2t′2 + α131′3 = C + α131′3 ∈ {C−} for all α ∈ R .

If α 6= 0 then rk(G) = 3, and G is a positive definite generalized inverse
of C. Of course there are many other positive definite generalized inverses
for C.
Let us next consider the conditions under which G in (2) is a symmetric
nonnegative definite generalized inverse of C; denote this set as

{C−nnd} .

We observe that

G = T

 1 0 f1
0 1 f2
f1 f2 δ

T′ = T
(

I2 f
f ′ δ

)
T′ ∈ NND3

if and only if (why?)

K :=
(

I2 f
f ′ δ

)
∈ NND3 ,

which in view of (14.7) and (14.8) (p. 306) holds if and only if

f ′f ≤ δ . (3)

For notational convenience, we can replace K with

L =
(

I2
√

3 f√
3 f ′ 3δ

)
,

which is nonnegative definite iff (3) holds.

Two side-questions:
(a) Is the symmetry of 1 0 a

0 1 b
c d e

 := N

necessary for the symmetry of TNT′? (Yes.)
(b) Is the nonnegative definiteness of K necessary for the nonnegative
definiteness of TKT′? (Yes.)
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Let’s calculate the matrix G = TLT′:

G = TLT′ = T
(

I2
√

3 f√
3 f ′ 3δ

)
T′

= T1T′1 + t3
√

3 f ′T′1 + T1
√

3 ft′3 + δ 3 t3t′3
= C + 1f ′T′1 + T1f1′ + δ 11′.

Now any matrix of the form

G = C + 1f ′T′1 + T1f1′ + δ 11′ (4)

is a nonnegative definite generalized inverse of C for any f ∈ R2 and
δ ∈ R which satisfy

f ′f ≤ δ . (5)

We stop here for a while and advise the reader to have a look at the
Exercise 15.10 (p. 342) and the references therein.

After a short break, le’ts go back to business. According to Exercise 15.10
it seems that the set of nnd matrices given in (4) equals the set of nnd
matrices of the form

V = I3 + a1′ + 1a′ := I3 + W, (6)

where a ∈ R3 is an arbitrary vector subject to the condition that W
is nonnegative definite. Actually in Exercise 15.10 we are dealing with
positive definiteness and hence seems is seems above. When is V in (6)
nnd? We observe that

ch(V) = {1 + ch(a1′ + 1a′)} . (7)

Now consider the equation

Wq = (a1′ + 1a′)q = 0q = 0

i.e.,
a(1′q) + 1(a′q) = 0 .

If rk(1 : a) = 2, then q ∈ C (1 : a)⊥ and thereby 0 is an eigenvalue of W
of multiplicity 1(= n − 2) with q being the corresponding eigenvector.
The remaining two eigenvalues of W = a1′+1a′ are 1′a±

√
na′a. How to

prove this? We leave this open and refer to the references; in particular,
Farebrother (1987, Cor. 1). In any event, V is nnd iff

1 + 1′a −
√
na′a ≥ 0 , i.e., 1 ≥

√
na′a − 1′a . (8)

If rk(1 : a) = 1, i.e., a = c1 for some nonzero c ∈ R, then V = I3 + 2c11′
whose eigenvalues are {1 + ch(2c11′)} = {1, 1, 6c}.
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It’s time to stop here. There are some related considerations in the solu-
tion of Exercise 15.10. We may mention that Chaganty & Vaish (1997,
Cor. 2.1) characterized the class of all nnd generalized inverses of the
centering matrix C ∈ Rn×n as

V = C + 1b′ + b1′ − b̄11′, (9)

where b ∈ Rn is such that

b′Cb ≤ b̄ , and b̄ = 1′b/n .

Some references; those not appearing in the Tricks References, written
in full:

Chaganty, N. Rao & Vaish, A. K. (1997). An invariance property of
common statistical tests. Linear Algebra and its Applications, 264,
421–437.

Farebrother, R. W. (1987). Three theorems with applications to Eu-
clidean distance matrices. Linear Algebra and its Applications, 95,
11–16.

Jensen, D. R. (1996). Structured dispersion and validity in linear infer-
ence. Linear Algebra and its Applications, 249, 189–196.

Jensen, D. R. & Srinivasan, S. S. (2004). Matrix equivalence classes with
applications. Linear Algebra and its Applications, 388, 249–260.

Mathew (1985).
Sharpe, G. E. & Styan, G. P. H. (1965). Circuit duality and the general

network inverse. IEEE Trans. Circuit Theory CT-12, 22–27.
Styan & Subak-Sharpe (1997). �

3.11. Suppose that the variable vectors x, y and z are centered and of unit
length. Show that corresponding to (3.8) (p. 93),

rxy·z = 0 ⇐⇒ y ∈ C (Qzx)⊥ = C (x : z)⊥ � C (z) ,

where Qz = In −Pz. See also Exercise 8.7 (p. 185).
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