4.5 Exercises: Some Solutions (November 3, 2011)

4.1. Find all generalized inverses of $\mathbf{A}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. What is \mathbf{A}^{+}? What about the reflexive generalized inverse of \mathbf{A} ? Characterize the set of symmetric nonnegative definite generalized inverses of \mathbf{A}.

> - Solution to Ex. 4.1;

Writing

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

we see that any $\mathbf{G}=\left(\begin{array}{cc}1 & \alpha \\ \beta & \gamma\end{array}\right) \in\left\{\mathbf{A}^{-}\right\}$for all α, β, γ. Let us then consider the generalized inverses via the SVD of \mathbf{A}.
$\left|\mathbf{A}-\lambda \mathbf{I}_{2}\right|=\left|\begin{array}{cc}1-\lambda & 0 \\ 0 & 0-\lambda\end{array}\right|=-\lambda(1-\lambda)=0$
$\Longrightarrow \operatorname{ch}(\mathbf{A})=\{1,0\}=\left\{\lambda_{1}, \lambda_{2}\right\}$.
$\mathbf{A} \mathbf{t}_{1}=\mathbf{t}_{1} \Longrightarrow\binom{t_{11}}{0}=\binom{t_{11}}{t_{21}} \Longrightarrow \mathbf{t}_{1}=\binom{1}{0}$,
$\mathbf{A t}_{2}=0 \mathbf{t}_{2} \Longrightarrow\binom{t_{21}}{0}=\binom{0}{0} \Longrightarrow \mathbf{t}_{2}=\binom{0}{1}$,
$\operatorname{EVD}(=\mathrm{SVD})$ of \mathbf{A} is extremely simple: $\mathbf{A}=\mathbf{I}_{2}\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \mathbf{I}_{2}$.
Recall that according to Section 19.5 (pp. 407-408) the following holds:
If $\mathbf{A}_{n \times m}$ has a singular value decomposition $\mathbf{A}=\mathbf{U}\left(\begin{array}{cc}\boldsymbol{\Delta} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right) \mathbf{V}^{\prime}$, then

$$
\begin{aligned}
\mathbf{G} \in\left\{\mathbf{A}^{-}\right\} & \Longleftrightarrow \mathbf{G}=\mathbf{V}\left(\begin{array}{cc}
\Delta_{1}^{-1} & \mathbf{K} \\
\mathbf{L} & \mathbf{N}
\end{array}\right) \mathbf{U}^{\prime} \\
\mathbf{G} \in\left\{\mathbf{A}_{12}^{-}\right\} & \Longleftrightarrow \mathbf{G}=\mathbf{V}\left(\begin{array}{cc}
\Delta_{1}^{-1} & \mathbf{K} \\
\mathbf{L} & \mathbf{L} \boldsymbol{\Delta}_{1} \mathbf{K}
\end{array}\right) \mathbf{U}^{\prime} \\
\mathbf{G}=\mathbf{A}^{+} & \Longleftrightarrow \mathbf{G}=\mathbf{V}\left(\begin{array}{cc}
\boldsymbol{\Delta}_{1}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right) \mathbf{U}^{\prime}
\end{aligned}
$$

where \mathbf{K}, \mathbf{L}, and \mathbf{N} are arbitrary matrices. Hence for $\mathbf{A}=\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right)$ we have the following:

- $\mathbf{G} \in\left\{\mathbf{A}_{12}^{-}\right\} \Longleftrightarrow \mathbf{G}=\left(\begin{array}{cc}1 & \alpha \\ \beta & \alpha \beta\end{array}\right)$ and such \mathbf{G} is symmetric when $\mathbf{G}=$ $\left(\begin{array}{cc}1 & \alpha \\ \alpha & \alpha^{2}\end{array}\right)$.
- $\mathbf{A}^{+}=\mathbf{A}$.
- \mathbf{G} is a symmetric nonnegative definite generalized inverse of \mathbf{A} if and only if $\mathbf{G}=\left(\begin{array}{cc}1 & \alpha \\ \alpha & \gamma^{2}\end{array}\right)$, where $\gamma^{2} \geq \alpha^{2}$. (Why?)
4.2. Denote

$$
\mathbf{A}_{n \times m}=\left(\begin{array}{cc}
\mathbf{B} & \mathbf{C} \\
\mathbf{D} & \mathbf{E}
\end{array}\right), \quad \mathbf{G}_{m \times n}=\left(\begin{array}{cc}
\mathbf{B}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)
$$

where $\operatorname{rank}\left(\mathbf{B}_{r \times r}\right)=r=\operatorname{rank}(\mathbf{A})$. Show that $\mathbf{G} \in\left\{\mathbf{A}^{-}\right\}$.

- Solution to Ex. 4.2

$\mathbf{A G A}=\mathbf{A}$.
4.3. Show that $\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-} \mathbf{A}^{\prime}$ is a $\{123\}$-inverse of \mathbf{A}.

- Solution to Ex. 4.3

$\mathbf{A} \cdot\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-} \mathbf{A}^{\prime} \cdot \mathbf{A}=\mathbf{A}$,
$\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-} \mathbf{A}^{\prime} \cdot \mathbf{A} \cdot\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-} \mathbf{A}^{\prime}=\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-} \mathbf{A}^{\prime}$,
$\left[\mathbf{A} \cdot\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-} \mathbf{A}^{\prime}\right]^{\prime}=\mathbf{A} \cdot\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-} \mathbf{A}$.
The above equalities follow easily from the fact $\mathbf{A}\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-} \mathbf{A}=\mathbf{P}_{\mathbf{A}}$.
4.4. Prove: $\mathbf{A G A}=\mathbf{A} \& \operatorname{rank}(\mathbf{G})=\operatorname{rank}(\mathbf{A}) \Longrightarrow \mathbf{G} \in\left\{\mathbf{A}_{12}^{-}\right\}$, i.e., \mathbf{G} is a reflexive generalized inverse of \mathbf{A}.

- Solution to Ex. 4.4

$\mathbf{G} \in\left\{\mathbf{A}_{12}^{-}\right\} \Longleftrightarrow \mathbf{A G A}=\mathbf{A}$ and $\mathbf{G A G}=\mathbf{G}$.
Suppose that $\mathbf{A G A}=\mathbf{A} \& \operatorname{rk}(\mathbf{G})=\operatorname{rk}(\mathbf{A})$. Then

$$
\mathbf{A G A G}=\mathbf{A G} .
$$

Because always $\operatorname{rk}(\mathbf{A G})=\operatorname{rk}(\mathbf{A})$, and by assumption $\operatorname{rk}(\mathbf{A})=\operatorname{rk}(\mathbf{G})$, we can cancel \mathbf{A} on the left on both sides of the above equality thus yielding $\mathbf{G A G}=\mathbf{A G}$.
4.5. Confirm:
(a) $\binom{\mathbf{0}_{p \times n}}{\mathbf{A}^{-}} \in\left\{\left(\mathbf{0}_{n \times p}: \mathbf{A}_{n \times m}\right)^{-}\right\}$,
(b) $\operatorname{det}(\mathbf{P}) \neq 0, \operatorname{det}(\mathbf{Q}) \neq 0 \Longrightarrow \mathbf{Q}^{-1} \mathbf{A}^{-} \mathbf{P}^{-1} \in\left\{(\mathbf{P A Q})^{-}\right\}, \mathbf{Q}^{-1} \mathbf{A}^{+} \mathbf{P}^{-1}$ $=(\mathbf{P A Q})^{+}$.

- Solution to Ex. 4.5
(a) $\quad\left(\mathbf{0}_{n \times p}: \mathbf{A}_{n \times m}\right)\binom{\mathbf{0}_{p \times n}}{\mathbf{A}^{-}}\left(\mathbf{0}_{n \times p}: \mathbf{A}_{n \times m}\right)=\mathbf{A A}^{-}\left(\mathbf{0}_{n \times p}: \mathbf{A}_{n \times m}\right)$

$$
=\left(\mathbf{0}_{n \times p}: \mathbf{A}_{n \times m}\right) .
$$

(b) In view of

$$
\mathbf{P A Q} \cdot \mathbf{Q}^{-1} \mathbf{A}^{-} \mathbf{P}^{-1} \cdot \mathbf{P A Q}=\mathbf{P A} \mathbf{A}^{-} \mathbf{A Q}=\mathbf{P A Q}
$$

we have $\mathbf{Q}^{-1} \mathbf{A}^{-} \mathbf{P}^{-1} \in\left\{(\mathbf{P A Q})^{-}\right\}$.

$$
\begin{aligned}
(\mathrm{mp} 1) & \mathbf{P A Q} \cdot \mathbf{Q}^{-1} \mathbf{A}^{+} \mathbf{P}^{-1} \cdot \mathbf{P A} \mathbf{Q}=\mathbf{P} \mathbf{A} \mathbf{A}^{+} \mathbf{A} \mathbf{Q}=\mathbf{P A Q} \\
(\mathrm{mp} 2) & \mathbf{Q}^{-1} \mathbf{A}^{+} \mathbf{P}^{-1} \cdot \mathbf{P A Q} \cdot \mathbf{Q}^{-1} \mathbf{A}^{+} \mathbf{P}^{-1}=\mathbf{Q}^{-1} \mathbf{A}^{+} \mathbf{P}^{-1} \\
(\mathrm{mp} 3) & \mathbf{P A Q} \cdot \mathbf{Q}^{-1} \mathbf{A}^{+} \mathbf{P}^{-1}=\mathbf{P} \mathbf{A} \mathbf{A}^{+} \mathbf{P}^{-1}=\mathbf{P P}_{\mathbf{A}} \mathbf{P}^{-1}=\text { symmetric } \\
(\mathrm{mp} 4) & \mathbf{Q}^{-1} \mathbf{A}^{+} \mathbf{P}^{-1} \cdot \mathbf{P A Q}=\mathbf{Q}^{-1} \mathbf{A}^{+} \mathbf{A} \mathbf{Q}=\mathbf{Q}^{-1} \mathbf{P}_{\mathbf{A}^{\prime}} \mathbf{Q}=\text { symmetric } .
\end{aligned}
$$

However, the last two statements do no necessarily hold. Hence the text in the beginning of the exercise should be rephrased as: "Confirm or deny:". Notice that following holds:

$$
\mathbf{P} \text { and } \mathbf{Q} \text { are orthogonal } \Longrightarrow(\mathbf{P A Q})^{+}=\mathbf{Q}^{\prime} \mathbf{A}^{+} \mathbf{P}^{\prime}
$$

