5.14 Exercises: Some Solutions (November 10, 2011)

5.1. Show that for conformable matrices we have

$$
\operatorname{rank}\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{0}
\end{array}\right)=\operatorname{rank}(\mathbf{B})+\operatorname{rank}(\mathbf{C})+\operatorname{rank}\left[\left(\mathbf{I}-\mathbf{P}_{\mathbf{B}}\right) \mathbf{A}\left(\mathbf{I}-\mathbf{P}_{\mathbf{C}^{\prime}}\right)\right] .
$$

Marsaglia \& Styan 1974a, Th. 19).

- Solution to Ex. 5.1

Consider $\mathbf{A}_{n \times m}, \mathbf{B}_{n \times p}, \mathbf{C}_{q \times m}$, and denote $\mathbf{Q}_{\mathbf{B}}=\mathbf{I}_{n}-\mathbf{P}_{\mathbf{B}}$. Then

$$
\begin{aligned}
\operatorname{rk}\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{0}
\end{array}\right) & \left.=\operatorname{rk}\binom{\mathbf{B}}{\mathbf{0}}+\operatorname{rk}\left(\left(\mathbf{I}_{n+q}-\mathbf{P}_{(\mathbf{B}}^{\mathbf{0}}\right)^{\prime}\right)\binom{\mathbf{A}}{\mathbf{C}}\right) \\
& =\operatorname{rk}(\mathbf{B})+\operatorname{rk}\left(\left(\begin{array}{cc}
\mathbf{Q}_{\mathbf{B}} & \mathbf{0} \\
\mathbf{0} & \mathbf{I}_{q}
\end{array}\right)\binom{\mathbf{A}}{\mathbf{C}}\right) \\
& =\operatorname{rk}(\mathbf{B})+\operatorname{rk}\binom{\mathbf{Q}_{\mathbf{B}} \mathbf{A}}{\mathbf{C}} \\
& =\operatorname{rk}(\mathbf{B})+\operatorname{rk}\left(\mathbf{C}^{\prime}: \mathbf{A}^{\prime} \mathbf{Q}_{\mathbf{B}}\right) \\
& \left.=\operatorname{rk}(\mathbf{B})+\operatorname{rk}\left(\mathbf{C}^{\prime}\right)+\operatorname{rk}\left(\mathbf{Q}_{\mathbf{C}^{\prime}} \mathbf{A}^{\prime} \mathbf{Q}_{\mathbf{B}}\right)\right] \\
& =\operatorname{rk}(\mathbf{B})+\operatorname{rk}(\mathbf{C})+\operatorname{rk}\left(\mathbf{Q}_{\mathbf{B}} \mathbf{A}_{\mathbf{Q}_{\mathbf{C}^{\prime}}}\right) .
\end{aligned}
$$

Notice that

$$
\mathbf{P}_{\binom{\mathbf{B}}{\mathbf{0}}}=\binom{\mathbf{B}}{\mathbf{0}}\left(\mathbf{B}^{\prime} \mathbf{B}\right)^{-}\left(\mathbf{B}^{\prime}: \mathbf{0}\right)=\left(\begin{array}{cc}
\mathbf{P}_{\mathbf{B}} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)
$$

