

Figure 8.7 (Exercise 8.15 Three treatments, 1, 2 and 3; seven observations.
8.15. Consider the scatter plot of Figure 8.7, where we have seven data points and we have three treatments whose effect on y we wish to study using one-way ANOVA. Show that the F-statistic for testing the hypothesis $H: \mu_{1}=\mu_{2}=\mu_{3}$ has value $F=12$ with $g-1=2$ and $n-g=4$ degrees of freedom, and

$$
\mathrm{SST}=\mathrm{SS}_{\text {Between }}+\mathrm{SS}_{\text {Within }}: \quad 42=36+6
$$

- Solution to Ex. 8.15

We have the following linear model:

$$
\begin{aligned}
\mathscr{M}_{*}: \quad \mathbf{y} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3}
\end{array}\right)+\boldsymbol{\varepsilon}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \\
\left(\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2} \\
\mathbf{y}_{3}
\end{array}\right) & =\left(\begin{array}{ccc}
\mathbf{1}_{2} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1}_{3} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{1}_{2}
\end{array}\right)\left(\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3}
\end{array}\right)+\boldsymbol{\varepsilon}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} .
\end{aligned}
$$

Moreover,

$$
\mathbf{H}=\left(\begin{array}{ccc}
\mathbf{J}_{2} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{J}_{3} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{J}_{2}
\end{array}\right), \quad \mathbf{M}=\mathbf{I}_{7}-\mathbf{H}=\left(\begin{array}{ccc}
\mathbf{C}_{2} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{C}_{3} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{C}_{2}
\end{array}\right)
$$

$$
\begin{gathered}
\mathbf{H y}=\left(\begin{array}{l}
\bar{y}_{1} \mathbf{1}_{2} \\
\bar{y}_{2} \mathbf{1}_{3} \\
\bar{y}_{3} \mathbf{1}_{2}
\end{array}\right), \quad \mathbf{M} \mathbf{y}=\left(\begin{array}{l}
\mathbf{C}_{2} \mathbf{y}_{1} \\
\mathbf{C}_{3} \mathbf{y}_{2} \\
\mathbf{C}_{2} \mathbf{y}_{3}
\end{array}\right), \quad\left(\mathbf{H}-\mathbf{J}_{7}\right) \mathbf{y}=\left(\begin{array}{c}
\left(\bar{y}_{1}-\bar{y}\right) \mathbf{1}_{2} \\
\left(\bar{y}_{2}-\bar{y}\right) \mathbf{1}_{3} \\
\left(\bar{y}_{3}-\bar{y}\right) \mathbf{1}_{2}
\end{array}\right), \\
\mathrm{SST}=\mathbf{y}^{\prime} \mathbf{C}_{7} \mathbf{y}=\sum_{i=1}^{3} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}\right)^{2}, \quad \mathrm{SSE}=\mathbf{y}^{\prime} \mathbf{M} \mathbf{y}=\mathrm{SS}_{1}+\mathrm{SS}_{2}+\mathrm{SS}_{g}, \\
\mathrm{SSR}=\mathbf{y}^{\prime}\left(\mathbf{H}-\mathbf{J}_{7}\right) \mathbf{y}=\sum_{i=1}^{3} n_{i}\left(\bar{y}_{i}-\bar{y}\right)^{2}:=\mathrm{SSB}, \quad \mathrm{SST}=\mathrm{SSR}+\mathrm{SSE}, \\
\sum_{i=1}^{3} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}\right)^{2}=\sum_{i=1}^{3} n_{i}\left(\bar{y}_{i}-\bar{y}\right)^{2}+\sum_{i=1}^{3} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i}\right)^{2}, \\
\operatorname{SST}=\mathrm{SS}_{\text {Between }}+\mathrm{SS}_{\mathrm{Within}}, \\
\mathbf{y}^{\prime}(\mathbf{I}-\mathbf{J}) \mathbf{y}=\mathbf{y}^{\prime}(\mathbf{H}-\mathbf{J}) \mathbf{y}+\mathbf{y}^{\prime}(\mathbf{I}-\mathbf{H}) \mathbf{y} .
\end{gathered}
$$

Under the hypothesis $H: \mu_{1}=\mu_{2}=\mu_{3}$ we have the model

$$
\text { model under } H: \quad \mathbf{y}=\mathbf{1} \mu+\varepsilon
$$

and hence $\mathrm{SSE}_{H}=\mathrm{SST}$ and $\mathrm{SSE}_{H}-\mathrm{SSE}=\mathrm{SSB}$, and, under normality, the F-test statistics for testing H is

$$
\begin{aligned}
F & =\frac{\left(\mathrm{SSE}_{H}-\mathrm{SSE}\right) /(3-1)}{\operatorname{SSE} /(7-3)} \\
& =\frac{\mathbf{y}^{\prime}\left(\mathbf{H}-\mathbf{J}_{7}\right) \mathbf{y} / 2}{\mathbf{y}^{\prime} \mathbf{M y} / 4}=\frac{\operatorname{SSB} / 2}{\operatorname{SSE} / 4} \sim \mathrm{~F}(3-1,7-3) .
\end{aligned}
$$

Notice:

$$
\bar{y}_{1}=2, \quad \bar{y}_{2}=5, \quad \bar{y}_{3}=8, \quad \bar{y}=5,
$$

$$
\begin{aligned}
\mathrm{SSE} & =\mathrm{SS}_{\text {Within }}=2+2+2=6, \\
\mathrm{SSR} & =\mathrm{SSB}=\mathrm{SS}_{\text {Between }}=2(2-5)^{2}+3(5-5)^{2}+2(8-5)^{2}=36, \\
\mathrm{SST} & =(1-5)^{2}+(3-5)^{5}+(4-5)^{2}+(6-5)^{5}+(7-5)^{2}+(9-5)^{2} \\
& =\mathrm{SSR}+\mathrm{SSE}=6+36=42, \\
F & =12 .
\end{aligned}
$$

8.16 (Continued ...). Suppose that the scatter plot of Figure 8.7 represents a two-dimensional discrete uniform distribution of random variables x
and y. Let $\mathrm{E}(y \mid x)$ denote a random variable whose values are conditional means $\mathrm{E}(y \mid x=1), \mathrm{E}(y \mid x=2), \mathrm{E}(y \mid x=3)$ with probabilities $\mathrm{P}(x=1), \mathrm{P}(x=2), \mathrm{P}(x=3)$, respectively. Define the random variable $\operatorname{var}(y \mid x)$ in the corresponding way and show that

$$
\begin{equation*}
\operatorname{var}(y)=\operatorname{var}[\mathrm{E}(y \mid x)]+\mathrm{E}[\operatorname{var}(y \mid x)] \tag{8.196}
\end{equation*}
$$

Casella (2008, p. 9) calls 8.196) as "a most important equality" in his book on Statistical Design. Confirm the connection between 8.196) and the ANOVA decomposition $\mathrm{SST}=\mathrm{SSB}+\mathrm{SSE}$.

Notice: O'Hagan (2012) refers to 8.196 as "my thing of beauty". O'Hagan, T. (2012). A thing of beauty. Significance, 9, 26-28.

- Solution to Ex. 8.16

Let us first show that

$$
\mathrm{E}(y)=\mathrm{E}[\mathrm{E}(y \mid x)] .
$$

Now we consider $\mathrm{E}(y \mid x)$ as a random variable such that

$$
\begin{aligned}
& \text { values of } \mathrm{E}(y \mid x): \quad 2,5,8, \\
& \qquad \begin{aligned}
\text { probabilities: } & \frac{2}{7}, \frac{3}{7}, \frac{2}{7} \\
\mathrm{E}[\mathrm{E}(y \mid x)] & =\frac{2}{7} 2+\frac{3}{7} 5+\frac{2}{7} 8=5, \\
\mathrm{E}(y) & =\frac{1}{7}(1+3+4+5+6+7+9)=5 .
\end{aligned}
\end{aligned}
$$

Consider then the variance:

$$
\begin{aligned}
\operatorname{var}(y) & =\frac{1}{7}\left[(1-5)^{2}+(3-5)^{2}+(4-5)^{2}+(6-5)^{2}+(7-5)^{2}+(9-5)^{2}\right] \\
& =\frac{1}{7} 42=\frac{1}{7} \mathrm{SST}
\end{aligned}
$$

Because the values of $\mathrm{E}(y \mid x)$ are 2, 5, 8, with probabilities $\frac{2}{7}, \frac{3}{7}, \frac{2}{7}$, the variance of random variable $\mathrm{E}(y \mid x)$ is

$$
\begin{aligned}
\operatorname{var}[\mathrm{E}(y \mid x)] & =\frac{2}{7}(2-5)^{2}+\frac{3}{7}(5-5)^{2}+\frac{2}{7}(8-5)^{2} \\
& =\frac{1}{7}\left[2(2-5)^{2}+3(5-5)^{2}+2(8-5)^{2}\right] \\
& =\frac{1}{7} 36=\frac{1}{7} \mathrm{SS}_{\text {Between }} .
\end{aligned}
$$

Similarly we have for the random variable $\operatorname{var}(y \mid x)$:

$$
\begin{aligned}
\text { value of } \operatorname{var}(y \mid x=1): & \frac{1}{2}\left[(1-2)^{2}+(3-2)^{2}\right]=\frac{1}{2} 2=\frac{1}{2} \mathrm{SS}_{1} \\
\text { value of } \operatorname{var}(y \mid x=2): & \frac{1}{3}\left[(4-5)^{2}+(5-5)^{2}+(6-5)^{2}\right]=\frac{1}{3} 2=\frac{1}{3} \mathrm{SS}_{2} \\
\text { value of } \operatorname{var}(y \mid x=3): & \frac{1}{2}\left[(7-8)^{2}+(9-8)^{2}\right]=\frac{1}{2} 2=\frac{1}{2} \mathrm{SS}_{3} \\
\text { probabilities: } & \frac{2}{7}, \frac{3}{7}, \frac{2}{7}, \\
\mathrm{E}[\operatorname{var}(y \mid x)] & =\frac{2}{7} \cdot \frac{1}{2} \mathrm{SS}_{1}+\frac{3}{7} \cdot \frac{1}{3} \mathrm{SS}_{2}+\frac{2}{7} \cdot \frac{1}{2} \mathrm{SS}_{3} \\
& =\frac{1}{7}\left(\mathrm{SS}_{1}+\mathrm{SS}_{2}+\mathrm{SS}_{3}\right)=\frac{1}{7} \mathrm{SS}_{\text {Within }}
\end{aligned}
$$

Hence we have

$$
\begin{gathered}
\operatorname{var}(y)=\operatorname{var}[\mathrm{E}(y \mid x)]+\mathrm{E}[\operatorname{var}(y \mid x)] \\
\frac{1}{7} \mathrm{SST}=\frac{1}{7} \mathrm{SS}_{\text {Between }}+\frac{1}{7} \mathrm{SS}_{\text {Within }}
\end{gathered}
$$

