10.14 Exercises: Some Solutions (November 25, 2012)

Baksalary \& Kala (1981a, p. 913) and Drygas (1983) showed that a linear statistic Fy is linearly sufficient for $\mathbf{X} \boldsymbol{\beta}$ under the model \mathscr{M} if and only if the column space inclusion $\mathscr{C}(\mathbf{X}) \subset \mathscr{C}\left(\mathbf{W} \mathbf{F}^{\prime}\right)$ holds; here $\mathbf{W}=\mathbf{V}+\mathbf{X L L} \mathbf{L}^{\prime} \mathbf{X}^{\prime}$ with \mathbf{L} being an arbitrary matrix such that $\mathscr{C}(\mathbf{W})=\mathscr{C}(\mathbf{X}: \mathbf{V})$. The hard-working reader may prove the following proposition.
Proposition 10.12. (Page 257.) Let $\mathbf{W}=\mathbf{V}+\mathbf{X L L}^{\prime} \mathbf{X}^{\prime}$ be an arbitrary matrix satisfying $\mathscr{C}(\mathbf{W})=\mathscr{C}(\mathbf{X}: \mathbf{V})$. Then $\mathbf{F y}$ is linearly sufficient for $\mathbf{X} \boldsymbol{\beta}$ under $\mathscr{M}=\left\{\mathbf{y}, \mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{V}\right\}$ if and only if any of the following equivalent statements holds:
(a) $\mathscr{C}(\mathbf{X}) \subset \mathscr{C}\left(\mathbf{W} \mathbf{F}^{\prime}\right)$,
(b) $\mathscr{N}(\mathbf{F}) \cap \mathscr{C}(\mathbf{X}: \mathbf{V}) \subset \mathscr{C}\left(\mathbf{V} \mathbf{X}^{\perp}\right)$,
(c) $\operatorname{rank}\left(\mathbf{X}: \mathbf{V F}^{\prime}\right)=\operatorname{rank}\left(\mathbf{W F}^{\prime}\right)$,
(d) $\mathscr{C}\left(\mathbf{X}^{\prime} \mathbf{F}^{\prime}\right)=\mathscr{C}\left(\mathbf{X}^{\prime}\right)$ and $\mathscr{C}(\mathbf{F} \mathbf{X}) \cap \mathscr{C}\left(\mathbf{F} \mathbf{V} \mathbf{X}^{\perp}\right)=\{\mathbf{0}\}$,
(e) the best linear predictor of \mathbf{y} based on $\mathbf{F y}, \operatorname{BLP}(\mathbf{y} ; \mathbf{F y})$, is almost surely equal to a linear function of $\mathbf{F y}$ which does not depend on $\boldsymbol{\beta}$.
Moreover, let $\mathbf{F y}$ be linearly sufficient for $\mathbf{X} \boldsymbol{\beta}$ under $\mathscr{M}=\left\{\mathbf{y}, \mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{V}\right\}$. Then each BLUE of $\mathbf{X} \boldsymbol{\beta}$ under the transformed model $\left\{\mathbf{F y}, \mathbf{F X} \boldsymbol{\beta}, \sigma^{2} \mathbf{F} \mathbf{V F}^{\prime}\right\}$ is the BLUE of $\mathbf{X} \boldsymbol{\beta}$ under the original model \mathscr{M} and vice versa.

- Proof of Proposition 10.12

Denote $\mathbf{U}=\mathbf{L L}^{\prime}$ so that $\mathbf{W}=\mathbf{V}+\mathbf{X U X} \mathbf{X}^{\prime}$. Following Baksalary \& Kala (1981a p. 914), let us begin by writing up the following lemma:

Lemma A. Let $\mathbf{K} \boldsymbol{\beta}$ be estimable under $\mathscr{M}=\{\mathbf{y}, \mathbf{X} \boldsymbol{\beta}, \mathbf{V}\}$. Then $\mathbf{A y}$ is a BLUE of $\mathbf{K} \boldsymbol{\beta}$ if and only if

$$
\begin{equation*}
\mathbf{A} \mathbf{W}=\mathbf{K}\left(\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{X}\right)^{-} \mathbf{X}^{\prime} \tag{1}
\end{equation*}
$$

where \mathbf{W} and \mathbf{L} are defined so that

$$
\begin{equation*}
\mathbf{W}=\mathbf{V}+\mathbf{X} \mathbf{L L}^{\prime} \mathbf{X}^{\prime}, \quad \mathscr{C}(\mathbf{X}) \subset \mathscr{C}(\mathbf{W}) \tag{2}
\end{equation*}
$$

To prove Lemma A, we know by Theorem 10 (p. 217) that Ay is a BLUE for estimable $\mathbf{K} \boldsymbol{\beta}$ if and only if

$$
\begin{equation*}
\mathbf{A}(\mathbf{X}: \mathbf{V M})=(\mathbf{K}: \mathbf{0}), \quad \text { where } \mathbf{M}=\mathbf{I}_{n}-\mathbf{H} \tag{3}
\end{equation*}
$$

The general expression for \mathbf{A} satisfying (3) is, see Prop. 10.5 (p. 229),

$$
\begin{equation*}
\mathbf{A}=\mathbf{K}\left(\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{X}\right)^{-} \mathbf{X}^{\prime} \mathbf{W}^{-}+\mathbf{N}\left(\mathbf{I}_{n}-\mathbf{P}_{\mathbf{W}}\right) \tag{4}
\end{equation*}
$$

where \mathbf{N} is free to vary. Postmultipying (4) by \mathbf{W} gives

$$
\mathbf{A} \mathbf{W}=\mathbf{K}\left(\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{X}\right)^{-} \mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{W}=\mathbf{K}\left(\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{X}\right)^{-} \mathbf{X}^{\prime}
$$

where we have used the property $\mathscr{C}(\mathbf{X}) \subset \mathscr{C}\left(\mathbf{W}^{\prime}\right)$; see Prop. 12.1 (p. 286). On the other hand, the general solution for \mathbf{A} in (1) is precisely of the form (4) and thereby (1) implies that $\mathbf{A y}$ is a BLUE for $\mathbf{K} \boldsymbol{\beta}$.

Baksalary \& Kala 1981a, p. 914) formulate their result as follows:
Theorem A. Let \mathbf{F} be a $q \times n$ matrix.
(i) A BLUE of $\mathbf{X} \boldsymbol{\beta}$ is obtainable as a linear function of $\mathbf{F y}$ [this phraseology is later called linear sufficiency] if and only if

$$
\begin{equation*}
\mathscr{C}(\mathbf{X}) \subset \mathscr{C}\left(\mathbf{W} \mathbf{F}^{\prime}\right) \tag{5}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\operatorname{rk}\left(\mathbf{X}: \mathbf{V F}^{\prime}\right)=\operatorname{rk}\left(\mathbf{W F}^{\prime}\right) \tag{6}
\end{equation*}
$$

(ii) If the condition of (i) is satisfied, then each BLUE of $\mathbf{X} \boldsymbol{\beta}$ in the transformed model $\mathscr{M}_{F}=\left\{\mathbf{F y}, \mathbf{F X} \boldsymbol{\beta}, \mathbf{F V F}^{\prime}\right\}$ is also a BLUE of $\mathbf{X} \boldsymbol{\beta}$ in the original model $\{\mathbf{y}, \mathbf{X} \boldsymbol{\beta}, \mathbf{V}\}$, and vice versa.
To prove (i), we observe that in view of Lemma A, a BLUE of $\mathbf{X} \boldsymbol{\beta}$ is expressible as $\mathbf{C F y}$, for some $q \times n$ matrix \mathbf{C}, if and only if

$$
\begin{equation*}
\mathbf{C F W}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{X}\right)^{-} \mathbf{X}^{\prime} \tag{7}
\end{equation*}
$$

The above equation has a solution for \mathbf{C} if and only if

$$
\begin{equation*}
\mathscr{C}\left[\mathbf{X}\left[\left(\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{X}\right)^{-}\right]^{\prime} \mathbf{X}^{\prime}\right] \subset \mathscr{C}\left(\mathbf{W F}^{\prime}\right) \tag{8}
\end{equation*}
$$

But in view of Prop. 12.1 (p. 286) we have

$$
\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{X}\right)^{-} \mathbf{X}^{\prime}=\mathbf{X}^{\prime}
$$

and thereby

$$
\begin{equation*}
\mathbf{X}\left[\left(\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{X}\right)^{-}\right]^{\prime} \mathbf{X}^{\prime}\left(\mathbf{W}^{-}\right)^{\prime} \mathbf{X}=\mathbf{X} \tag{9}
\end{equation*}
$$

for any choices of the generalized inverses involved, which implies

$$
\begin{aligned}
\mathscr{C}(\mathbf{X}) & =\mathscr{C}\left\{\mathbf{X}\left[\left(\mathbf{X}^{\prime} \mathbf{W}^{-}\right]^{\prime} \mathbf{X}\right)^{-} \mathbf{X}^{\prime}\left(\mathbf{W}^{-}\right)^{\prime} \mathbf{X}\right\} \\
& \subset \mathscr{C}\left\{\mathbf{X}\left[\left(\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{X}\right)^{-}\right]^{\prime} \mathbf{X}^{\prime}\right\} \subset \mathscr{C}(\mathbf{X})
\end{aligned}
$$

and so

$$
\begin{equation*}
\left.\mathscr{C}\left\{\mathbf{X}\left[\left(\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{X}\right)^{-}\right]^{\prime} \mathbf{X}^{\prime}\right]\right\}=\mathscr{C}(\mathbf{X}) \tag{10}
\end{equation*}
$$

Note: In the above proof, the nonnegative definiteness of \mathbf{W} does not seem to be needed!

To confirm the equivalence between (5) and (6), we first note that obviously (5) is equivalent to

$$
\operatorname{rk}\left(\mathbf{X}: \mathbf{W F}^{\prime}\right)=\operatorname{rk}\left(\mathbf{W F}^{\prime}\right)
$$

but on the other hand, cf. (5.2) in Theorem 5 (p. 121),

$$
\begin{align*}
\operatorname{rk}\left(\mathbf{X}: \mathbf{W F}^{\prime}\right) & =\operatorname{rk}(\mathbf{X})+\operatorname{rk}\left[\left(\mathbf{I}_{n}-\mathbf{P}_{\mathbf{X}}\right) \mathbf{W F}^{\prime}\right] \\
& =\operatorname{rk}(\mathbf{X})+\operatorname{rk}\left[\left(\mathbf{I}_{n}-\mathbf{P}_{\mathbf{X}}\right) \mathbf{V F}^{\prime}\right] \\
& =\operatorname{rk}\left(\mathbf{X}: \mathbf{V F}^{\prime}\right) \tag{11}
\end{align*}
$$

and thus $(5) \Longleftrightarrow(6)$ and the proof of part (i) is completed.
To prove part (ii), Baksalary \& Kala 1981a, p. 915) observe first that (5) implies

$$
\begin{equation*}
\mathscr{C}\left[\mathbf{X}^{\prime}\left(\mathbf{W}^{-}\right)^{\prime} \mathbf{X}\right] \subset \mathscr{C}\left[\mathbf{X}^{\prime}\left(\mathbf{W}^{-}\right)^{\prime} \mathbf{W} \mathbf{F}^{\prime}\right] \tag{12}
\end{equation*}
$$

but it seems to be a bit simpler to write

$$
\begin{equation*}
\mathscr{C}\left(\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{X}\right) \subset \mathscr{C}\left(\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{W} \mathbf{F}^{\prime}\right) \tag{13}
\end{equation*}
$$

Now $\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{W}=\mathbf{X}^{\prime}$ and $\mathscr{C}\left(\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{X}\right)=\mathscr{C}\left(\mathbf{X}^{\prime}\right)$, and therefore (13) reduces to

$$
\begin{equation*}
\mathscr{C}\left(\mathbf{X}^{\prime}\right) \subset \mathscr{C}\left(\mathbf{X}^{\prime} \mathbf{F}^{\prime}\right), \quad \text { i.e., } \quad \mathscr{C}\left(\mathbf{X}^{\prime}\right)=\mathscr{C}\left(\mathbf{X}^{\prime} \mathbf{F}^{\prime}\right) \tag{14}
\end{equation*}
$$

This shows that the functions of $\mathbf{X} \boldsymbol{\beta}$, which are obviously estimable in the original model \mathscr{M}, are also estimable in the transformed model \mathscr{M}_{F} (please confirm!). In view of the Lemma A, a statistic CFy is a BLUE of $\mathbf{X} \boldsymbol{\beta}$ in the model \mathscr{M}_{F} if and only if

$$
\begin{equation*}
\mathbf{C F W F} \mathbf{F}^{\prime}=\mathbf{X}\left[\mathbf{X}^{\prime} \mathbf{F}^{\prime}\left(\mathbf{F} \mathbf{W} \mathbf{F}^{\prime}\right)^{-} \mathbf{F X}\right]^{-} \mathbf{X}^{\prime} \mathbf{F}^{\prime} \tag{15}
\end{equation*}
$$

where we have chosen the "W-matrix" in the model \mathscr{M}_{F} as

$$
\mathbf{W}_{F}=\mathbf{F}\left(\mathbf{V}+\mathbf{X} \mathbf{U} \mathbf{X}^{\prime}\right) \mathbf{F}^{\prime}=\mathbf{F} \mathbf{W} \mathbf{F}^{\prime}
$$

Note: Above it seems that we need to assume that \mathbf{W} is nnd.
Using now the fact that, on account of (5), $\mathbf{X}=\mathbf{W F}^{\prime} \mathbf{B}$ for some $q \times p$ matrix \mathbf{B}, the equation (15) may be written in the form

$$
\begin{align*}
\mathbf{C F W F}^{\prime} & =\mathbf{W F}^{\prime} \mathbf{B}\left[\mathbf{B}^{\prime} \mathbf{F} \mathbf{W}^{\prime} \mathbf{F}^{\prime}\left(\mathbf{F} \mathbf{W} F^{\prime}\right)^{-} \mathbf{F W} \mathbf{F}^{\prime} \mathbf{B}\right]^{-} \mathbf{B}^{\prime} \mathbf{F} \mathbf{W}^{\prime} \mathbf{F}^{\prime} \\
& =\mathbf{W F}^{\prime} \mathbf{B}\left[\mathbf{B}^{\prime} \cdot \mathbf{F W F}^{\prime}\left(\mathbf{F W} \mathbf{W}^{\prime}\right)^{-} \mathbf{F W} \mathbf{F}^{\prime} \cdot \mathbf{B}\right]^{-} \mathbf{B}^{\prime} \mathbf{F W F} \mathbf{F}^{\prime} \\
& =\mathbf{W F}^{\prime} \mathbf{B}\left(\mathbf{B}^{\prime} \mathbf{F W F} \mathbf{F}^{\prime} \mathbf{B}\right)^{-} \mathbf{B}^{\prime} \mathbf{F} \mathbf{W F} \mathbf{F}^{\prime} \\
& =\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{X}\right)^{-} \mathbf{B}^{\prime} \mathbf{F} \mathbf{W F}^{\prime}, \tag{16}
\end{align*}
$$

where we have used the symmetry of \mathbf{W} and the equality $\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{X}=$ $\mathbf{B}^{\prime} \mathbf{F} \mathbf{W} \mathbf{F}^{\prime} \mathbf{B}$. Since \mathbf{W} is nonnegative definite, we can cancel, in view of the rank cancellation rule, the right-most \mathbf{F}^{\prime} from each side of

$$
\begin{equation*}
\mathbf{C F W F}^{\prime}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{X}\right)^{-} \mathbf{B}^{\prime} \mathbf{F} \mathbf{W} \mathbf{F}^{\prime} \tag{17}
\end{equation*}
$$

which then becomes (7), i.e., (16) is equivalent to (7), thus showing that the sets of BLUEs of $\mathbf{X} \boldsymbol{\beta}$ in models \mathscr{M} and \mathscr{M}_{F} coincide.

So far we have shown that the following equivalent claims guarantee that $\mathbf{F y}$ is linearly sufficient for $\mathbf{X} \boldsymbol{\beta}$ under \mathscr{M} and then each BLUE of $\mathbf{X} \boldsymbol{\beta}$ under the transformed model \mathscr{M}_{F} is the BLUE of $\mathbf{X} \boldsymbol{\beta}$ under the original model \mathscr{M} and vice versa:
(a) $\mathscr{C}(\mathbf{X}) \subset \mathscr{C}\left(\mathbf{W F}^{\prime}\right)$,
(c) $\operatorname{rank}\left(\mathbf{X}: \mathbf{V F}^{\prime}\right)=\operatorname{rank}\left(\mathbf{W F}^{\prime}\right)$.

It remains to prove that (a) [and thereby (c)] is equivalent to each of the following:
(b) $\mathscr{N}(\mathbf{F}) \cap \mathscr{C}(\mathbf{X}: \mathbf{V}) \subset \mathscr{C}\left(\mathbf{V} \mathbf{X}^{\perp}\right)$,
(d) $\mathscr{C}\left(\mathbf{X}^{\prime} \mathbf{F}^{\prime}\right)=\mathscr{C}\left(\mathbf{X}^{\prime}\right)$ and $\mathscr{C}(\mathbf{F X}) \cap \mathscr{C}\left(\mathbf{F} \mathbf{V} \mathbf{X}^{\perp}\right)=\{\mathbf{0}\}$,
(e) the best linear predictor of \mathbf{y} based on $\mathbf{F y}, \operatorname{BLP}(\mathbf{y} ; \mathbf{F y})$, is almost surely equal to a linear function of $\mathbf{F y}$ which does not depend on $\boldsymbol{\beta}$.

Let us follow the steps of the proof of Baksalary \& Kala (1986, Thm. 1, p. 333) who considered the linear sufficiency of an estimable $\mathbf{K} \boldsymbol{\beta}$. They show that $\mathbf{F y}$ is linearly sufficient for $\mathbf{K} \boldsymbol{\beta}$ under \mathscr{M} if and only if

$$
\begin{equation*}
\mathscr{N}(\mathbf{F X}: \mathbf{F V M}) \subset \mathscr{N}(\mathbf{K}: \mathbf{0}) \tag{BK-86a}
\end{equation*}
$$

which in case of $\mathbf{K}=\mathbf{X}$ becomes

$$
\begin{equation*}
\mathscr{N}(\mathbf{F X}: \mathbf{F V M}) \subset \mathscr{N}(\mathbf{X}: \mathbf{0}) \tag{BK-86b}
\end{equation*}
$$

The proof is simple. Now $\mathbf{F y}$ is linearly sufficient for $\mathbf{X} \boldsymbol{\beta}$ under \mathscr{M} if and only if there exists a matrix \mathbf{A} such that

$$
\begin{equation*}
\mathbf{A}(\mathbf{F X}: \mathbf{F V M})=(\mathbf{X}: \mathbf{0}) \tag{18}
\end{equation*}
$$

In general,
there exists \mathbf{A} such that $\mathbf{A Z}=\mathbf{Y}$, i.e., $\mathbf{Z}^{\prime} \mathbf{A}^{\prime}=\mathbf{Y}^{\prime} \Longleftrightarrow \mathscr{C}\left(\mathbf{Y}^{\prime}\right) \subset \mathscr{C}\left(\mathbf{Z}^{\prime}\right)$

$$
\begin{equation*}
\Longleftrightarrow \mathscr{C}\left(\mathbf{Z}^{\prime}\right)^{\perp} \subset \mathscr{C}\left(\mathbf{Y}^{\prime}\right)^{\perp} \Longleftrightarrow \mathscr{N}(\mathbf{Z}) \subset \mathscr{N}(\mathbf{Y}) \tag{19}
\end{equation*}
$$

Using (19) we see that (18) has a solution for \mathbf{A} if and only if (BK86b) holds. Perhaps the condition (BK86b) could be added to the list (a), ..., (e) ?

Baksalary \& Kala (1986) also show that if (BK-86a) holds, then every representation of the BLUE of $\mathbf{K} \boldsymbol{\beta}$ in the induced model \mathscr{M}_{F} is also the BLUE of $\mathbf{K} \boldsymbol{\beta}$ in the original model \mathscr{M}.

Anyways, our task is to show that the solvability of (18) [or equivalently the condition (BK86b)] implies (b) etc and vice versa.

Equation (18) has a solution for \mathbf{A} if and only if

$$
\begin{equation*}
\mathscr{C}\binom{\mathbf{X}^{\prime}}{\mathbf{0}} \subset \mathscr{C}\binom{\mathbf{X}^{\prime} \mathbf{F}^{\prime}}{\mathbf{M V \mathbf { F } ^ { \prime }}} \tag{20}
\end{equation*}
$$

Now (20) implies (please confirm!) that $\mathscr{C}\left(\mathbf{X}^{\prime}\right)=\mathscr{C}\left(\mathbf{X}^{\prime} \mathbf{F}^{\prime}\right)$, and hence (20) implies

$$
\begin{equation*}
\mathscr{C}\binom{\mathbf{X}^{\prime} \mathbf{F}^{\prime}}{\mathbf{0}} \subset \mathscr{C}\binom{\mathbf{X}^{\prime} \mathbf{F}^{\prime}}{\mathbf{M V \mathbf { F } ^ { \prime }}} \tag{21}
\end{equation*}
$$

In view of Section 5.12 (p. 130), (21) holds if and only if

$$
\begin{equation*}
\mathscr{C}(\mathbf{F X}) \cap \mathscr{C}\left(\mathbf{F} \mathbf{V} \mathbf{X}^{\perp}\right)=\{\mathbf{0}\} \tag{22}
\end{equation*}
$$

Hence we have shown that (20) implies (d). The reverse implication is obvious because $\mathscr{C}\left(\mathbf{X}^{\prime}\right)=\mathscr{C}\left(\mathbf{X}^{\prime} \mathbf{F}^{\prime}\right)$ and (22) together certainly imply (20). Condition (d) appears in Baksalary \& Kala 1986. Corollary 2, p. 334).

How about (20) and (b)? We can proceed corresponding to Isotalo \& Puntanen (2006a, p. 1018) in their proof concerning the linear prediction sufficiency. So, let us first write (20) as

$$
\begin{equation*}
\mathscr{C}\left\{\left[\binom{\mathbf{X}^{\prime}}{\mathbf{M V}} \mathbf{F}^{\prime}\right]^{\perp}\right\} \subset \mathscr{C}\left[\binom{\mathbf{X}^{\prime}}{\mathbf{0}}^{\perp}\right] \tag{23}
\end{equation*}
$$

The inclusion (23) implies

$$
\begin{equation*}
\mathscr{C}\left\{(\mathbf{X}: \mathbf{V M})\left[\binom{\mathbf{X}^{\prime}}{\mathbf{M V}} \mathbf{F}^{\prime}\right]^{\perp}\right\} \subset \mathscr{C}\left[(\mathbf{X}: \mathbf{V M})\binom{\mathbf{X}^{\prime}}{\mathbf{0}}^{\perp}\right] \tag{24}
\end{equation*}
$$

In light of Prop. 5.7 (p. 137), the following holds:

$$
\mathscr{C}(\mathbf{A}) \cap \mathscr{C}(\mathbf{B})=\mathscr{C}\left[\mathbf{B}\left(\mathbf{B}^{\prime} \mathbf{A}^{\perp}\right)^{\perp}\right], \quad \mathscr{N}\left(\mathbf{A}^{\prime}\right) \cap \mathscr{C}(\mathbf{B})=\mathscr{C}\left[\mathbf{B}\left(\mathbf{B}^{\prime} \mathbf{A}\right)^{\perp}\right]
$$

Hence the left-hand side of (24) becomes

$$
\mathscr{N}\left(\mathbf{F}^{\prime}\right) \cap \mathscr{C}(\mathbf{X}: \mathbf{V M})
$$

The right-hand side of (24) is obviously VM; this can be seen from the fact

$$
\left(\begin{array}{cc}
\mathbf{I}_{p}-\mathbf{P}_{\mathbf{X}^{\prime}} & \mathbf{0} \\
\mathbf{0} & \mathbf{I}_{n}
\end{array}\right) \in\left\{\binom{\mathbf{X}^{\prime}}{\mathbf{0}}^{\perp}\right\}
$$

Thus we have shown that (20) implies (b).
To prove that (b), i.e., $\mathscr{N}(\mathbf{F}) \cap \mathscr{C}(\mathbf{X}: \mathbf{V M}) \subset \mathscr{C}(\mathbf{V M})$, implies the linear sufficiency of $\mathbf{F y}$, we let \mathbf{S} be such a matrix that $\mathbf{S y}$ is the BLUE for $\mathbf{X} \boldsymbol{\beta}$. This implies that $\mathbf{S V M}=\mathbf{0}$, i.e., $\mathscr{C}(\mathbf{V M}) \subset \mathscr{N}(\mathbf{S})$, so that (b) implies the inclusion

$$
\mathscr{N}(\mathbf{F}) \cap \mathscr{C}(\mathbf{X}: \mathbf{V M}) \subset \mathscr{C}(\mathbf{V M}) \subset \mathscr{N}(\mathbf{S})
$$

from which we immediately get

$$
\mathscr{N}(\mathbf{F}) \cap \mathscr{C}(\mathbf{X}: \mathbf{V M}) \subset \mathscr{N}(\mathbf{S}) \cap \mathscr{C}(\mathbf{X}: V \mathbf{M})
$$

Denoting $\mathbf{N}=(\mathbf{X}: \mathbf{V M})$, the above inclusion can be equivalently expressed as

$$
\mathscr{C}\left(\mathbf{F}^{\prime}: \mathbf{N}^{\perp}\right)^{\perp} \subset \mathscr{C}\left(\mathbf{S}^{\prime}: \mathbf{N}^{\perp}\right)^{\perp}
$$

i.e.,

$$
\begin{equation*}
\mathscr{C}\left(\mathbf{S}^{\prime}: \mathbf{N}^{\perp}\right) \subset \mathscr{C}\left(\mathbf{F}^{\prime}: \mathbf{N}^{\perp}\right) \tag{25}
\end{equation*}
$$

"Premultiplying" (25) by \mathbf{N}^{\prime} yields $\mathscr{C}\left(\mathbf{N}^{\prime} \mathbf{S}^{\prime}\right) \subset \mathscr{C}\left(\mathbf{N}^{\prime} \mathbf{F}^{\prime}\right)$, and hence there exists a matrix \mathbf{B} such that

$$
\mathbf{N}^{\prime} \mathbf{S}^{\prime}=\mathbf{N}^{\prime} \mathbf{F}^{\prime} \mathbf{B}^{\prime}, \quad \text { i.e., } \quad \mathbf{B F}(\mathbf{X}: \mathbf{V M})=\mathbf{S}(\mathbf{X}: \mathbf{V M})=(\mathbf{X}: \mathbf{0})
$$

Thus we have finally shown that (b) implies that Fy is linearly sufficient for $\mathbf{X} \beta$.

We skip the proof of (e) but let it it be mentioned that in view of Prop. 9.2 (p. 203), the BLP of \mathbf{y} based on $\mathbf{F y}$ is

$$
\begin{align*}
\operatorname{BLP}(\mathbf{y} ; \mathbf{F y}) & =\boldsymbol{\mu}_{\mathbf{y}}+\operatorname{cov}(\mathbf{y}, \mathbf{F} \mathbf{y})[\operatorname{cov}(\mathbf{F} \mathbf{y})]^{-}[\mathbf{F} \mathbf{y}-\mathrm{E}(\mathbf{F} \mathbf{y})] \\
& =\mathbf{X} \boldsymbol{\beta}+\mathbf{V F}^{\prime}(\mathbf{F V F} \\
&)^{-} \mathbf{F}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}) \tag{26}\\
& =\left[\mathbf{I}_{n}-\mathbf{V F}^{\prime}\left(\mathbf{F} \mathbf{V F}^{\prime}\right)^{-} \mathbf{F}\right] \mathbf{X} \boldsymbol{\beta}+\mathbf{V F}^{\prime}\left(\mathbf{F V F}^{\prime}\right)^{-} \mathbf{F y}
\end{align*}
$$

which means that (e) can be expressed as

$$
\begin{equation*}
\mathbf{V F}^{\prime}\left(\mathbf{F V F}^{\prime}\right)^{-} \mathbf{F X}=\mathbf{X} \tag{27}
\end{equation*}
$$

Here we may mention the references $\operatorname{Müller}(1987)$, Drygas (1983), Sengupta \& Jammalamadaka (2003, Ch. 11), and Isotalo \& Puntanen (2006b).

