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15.10 Exercises: Some Solutions (November 26, 2011)

15.1. Prove Proposition m (p- [340)).

e SoLUTION TO EX. .1k ‘

15.2. Prove Proposition [15.12 (p. [351]).
15.3. Prove (see page [352)):

S SL_§=BLUE(S | 4y).

Mg e

15.4. Consider the models defined as in (15.144)) (p. [351). Show that the
F-test statistics for testing § = 0 under .# is

B—Bu = (X'VIX)TIX'VT;
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(V) =t = —

miiga) var(0;)
where ¢ = My = V1, & is the BLUE’s residual, and (n —p — 1)6(2i) =
SSE(;)(V) = SSEz(V). The statistics ¢7(V) is a generalized version of
the externally Studentized residual, cf. (8.192)) (p.[182).

15.5. Suppose that V has the intraclass correlation structure and 1 € €' (X),
where X, x, has full column rank. Show that then DFBETA,(V) =
DFBETA,(I). What about the equality between Cook’s distance COOK?
and the generalized Cook’s distance COOK?(V)?

15.6. Express the Cook’s distance COOK?(V) as a function of an appropri-
ate Mahalanobis distance.

15.7. Consider a partitioned model .#12 = {y, X8, V}, where X has full
column rank and V is positive definite. Suppose that ,3 1 is fully efficient
under the small model .#; = {y, X181, V}. Show that

off (81 | M) =1 = X|XoBo(M12) = X XoBo(M12) .

[Isotalo, Puntanen & Styan| (2007).

15.8. Consider the models .# and .#;), defined in (15.144) (p.[351), where

A

X and (X : i;) have full column ranks. Suppose that 8 = 8 under ..
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Show that the equality B(i) =4 iy for all i = 1,...,n holds if and only if
MVM = M for some nonzero ¢ € R.

[Nurhonen & Puntanen| (1992a)), [Isotalo, Puntanen & Styan| (2007).

.9. According to (8.192)) (p.[182)), the F-test statistic for testing the hy-

pothesis § = 0 under the model .#z(I) = {y, X8 + ud, oI}, where
u = i;, becomes

— Y Pruy = &
‘ n—;—ly/(M — PMu)y - SSE(i) m;; ’

n—p—1

which is the squared externally Studentized residual. Under the model
M7 (1) the test statistic ¢ follows an F-distribution with 1 and n—p—1
degrees of freedom. Denote .#z(V) = {y, X8 + ud, 0?V}. Prove that
under the model .Zz(V): t2 ~F(l,n —p—1) < MVM = ¢*M for
some ¢ # 0.

[Nurhonen & Puntanen| (1991), Rao & Mitral (1971b| Ch. 9).

15

.10. Write up the solution to Exercise when Z = (1 : i,). Moreover,

confirm that the following statements are equivalent:

(a) CVC = 2C for some ¢ # 0,
(b) V = o?I + al’ + 1a’, where a is an arbitrary vector and « is any
scalar ensuring the positive definiteness of V.

Above C denotes the centering matrix. Confirm also that the eigenvalues
of Vin (b) are a? + 1'a + v/na’a, each with multiplicity one, and o?
with multiplicity n — 2. These results appear useful when studying the

robustness of the Grubbs’s test for detecting a univariate outlier.
[Baksalary & Puntanen| (1990b)), [Baksalary, Nurhonen & Puntanen| (1992)),
|[Lehman & Young| (1993)), [Markiewicz| (2001]).

SOLUTION TO EX. Il.im

Consider first the equation

CVC =c*’C, wherec#0. (1)

Our task is is to characterize all positive definite matrices V which satisfy

(1)

. Baksalary & Puntanen| (1990b)) proceed by using Theorem 2 of

(1984), which gives the following general positive definite solution:

V =cC+Tiwl +1w'T) +v11, (2)

where v is an arbitrary scalar and w € R"~! is an arbitrary vector satisfying
the condition

ww < v,
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Here, as in the solution of Exercise 3.10 (p. 104),
T=(t;:...:t-1:t,) = (T1: ﬁln)7

where the vectors t; are the orthonormal eigenvectors of C and C has the
eigenvalue decomposition

I,...1 0

_ /! __
C = TAT _T< YR

>T’:T1T’1.

Tt is interesting to rewrite (1) as
C(c?V)C=C, ie, ¢*Ve{C,}.
In view of the solution to Exercise 3.10, the general expression for ¢ 2V €

{ng} is
¢ 2V =C+1f'T) + T,f1' 46171/, (3)

for any f € R"~! and 6§ € R which satisfy
f'f<d. (4)
Multiplying (3) by ¢? gives the general pd expression for V:

V = A2C+ P1'T) + ATf1 + 2011’
= *C+1w'T) + Tywl’ +*6 171/, (5)
which is of the form (2).

Baksalary & Puntanen| (1990b) show that the sets specified by (b) and (2)
are equal. Let’s copy part their proof here.

Because the columns of (T : 1) span the entire R™, it is clear that a in
(b) can be uniquely decomposed as a = Tya; + 71 for some a; € R*~! and
v € R, and hence

Tia; =a—11,
Tia;1’ =al’ —~411’, 1a]T) =1a’ —~11'.

Choosing w = a; in (b) yields

V =c2C +al’ +1a’ — 2911’ +v11/
=c*C+al’ +1a’ + (v —29)11’
=cAI-J)+al’+1a" +n(v—27)J.

Substituting then ¢ = o and v = 2y + o2 /n into (2) yields (b). This shows
that the class (2) includes all matrices having the structure (b); (b) is called
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the class of Baldessari’s structure. The converse inclusion follows similarly,
by substituting a? = ¢? and a = Tya; + 71, where v = v/2 — ¢?/(2n).
How to confirm that the eigenvalues of

V=cd’I+al +1a’ :=’I+ W

are o + 1’a 4 v/na’a, each with multiplicity one, and o2 with multiplicity
n — 27 We observe that

ch(V) = {a? + ch(al’ 4+ 1a’)}. (c)

If tk(1 : a) = 2, then q € €(1 : a)l as stated in the solution of Exercise
3.10, and thereby 0 is an eigenvalue of W of multiplicity 2. The remaining
two eigenvalues of W = al’ + 1a’ are 1’a 4= v/na’a. We skip the proof.
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