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15.1. Prove Proposition 15.5 (p. 340).

• Solution to Ex. 15.1:

�

15.2. Prove Proposition 15.12 (p. 351).

15.3. Prove (see page 352):

β̃ − β̃(i) = (X′V−1X)−1X′V−1ii
ε̇i
ṁii

,
ε̇i
ṁii

= δ̃ = BLUE(δ |MZ) .

15.4. Consider the models defined as in (15.144) (p. 351). Show that the
F -test statistics for testing δ = 0 under MZ is

t2i (V) = ε̇2
i

ṁiiσ̃2
(i)

= δ̃2
i

ṽar(δ̃i)
,

where ε̇ = Ṁy = V−1ε̃, ε̃ is the BLUE’s residual, and (n− p− 1)σ̃2
(i) =

SSE(i)(V) = SSEZ(V). The statistics t2i (V) is a generalized version of
the externally Studentized residual, cf. (8.192) (p. 182).

15.5. Suppose that V has the intraclass correlation structure and 1 ∈ C (X),
where Xn×p has full column rank. Show that then DFBETAi(V) =
DFBETAi(I). What about the equality between Cook’s distance COOK2

i

and the generalized Cook’s distance COOK2
i (V)?

15.6. Express the Cook’s distance COOK2
i (V) as a function of an appropri-

ate Mahalanobis distance.

15.7. Consider a partitioned model M12 = {y, Xβ, V}, where X has full
column rank and V is positive definite. Suppose that β̂1 is fully efficient
under the small model M1 = {y, X1β1, V}. Show that

eff(β̂1 |M12) = 1 ⇐⇒ X′1X2β̃2(M12) = X′1X2β̂2(M12) .

Isotalo, Puntanen & Styan (2007).

15.8. Consider the models M and M(i), defined in (15.144) (p. 351), where
X and (X : ii) have full column ranks. Suppose that β̂ = β̃ under M .
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Show that the equality β̂(i) = β̃(i) for all i = 1, . . . , n holds if and only if
MVM = c2M for some nonzero c ∈ R.

Nurhonen & Puntanen (1992a), Isotalo, Puntanen & Styan (2007).

15.9. According to (8.192) (p. 182), the F -test statistic for testing the hy-
pothesis δ = 0 under the model MZ(I) = {y, Xβ + uδ, σ2I}, where
u = ii, becomes

t2i = y′PMuy
1

n−p−1y′(M−PMu)y
= ε̂2

i
1

n−p−1 SSE(i)mii

,

which is the squared externally Studentized residual. Under the model
MZ(I) the test statistic t2i follows an F -distribution with 1 and n− p− 1
degrees of freedom. Denote MZ(V) = {y, Xβ + uδ, σ2V}. Prove that
under the model MZ(V): t2i ∼ F(1, n − p − 1) ⇐⇒ MVM = c2M for
some c 6= 0.

Nurhonen & Puntanen (1991), Rao & Mitra (1971b, Ch. 9).

15.10. Write up the solution to Exercise 15.9 when Z = (1 : in). Moreover,
confirm that the following statements are equivalent:

(a) CVC = c2C for some c 6= 0,
(b) V = α2I + a1′ + 1a′, where a is an arbitrary vector and α is any

scalar ensuring the positive definiteness of V.

Above C denotes the centering matrix. Confirm also that the eigenvalues
of V in (b) are α2 + 1′a ±

√
na′a, each with multiplicity one, and α2

with multiplicity n − 2. These results appear useful when studying the
robustness of the Grubbs’s test for detecting a univariate outlier.

Baksalary & Puntanen (1990b), Baksalary, Nurhonen & Puntanen (1992),
Lehman & Young (1993), Markiewicz (2001).

• Solution to Ex. 15.10:

Consider first the equation

CVC = c2C , where c 6= 0 . (1)

Our task is is to characterize all positive definite matrices V which satisfy
(1). Baksalary & Puntanen (1990b) proceed by using Theorem 2 of Baksalary
(1984), which gives the following general positive definite solution:

V = c2C + T1w1′ + 1w′T′1 + ν11′, (2)

where ν is an arbitrary scalar and w ∈ Rn−1 is an arbitrary vector satisfying
the condition

w′w < c2ν .
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Here, as in the solution of Exercise 3.10 (p. 104),

T = (t1 : . . . : tn−1 : tn) = (T1 : 1√
n
1n) ,

where the vectors ti are the orthonormal eigenvectors of C and C has the
eigenvalue decomposition

C = TΛT′ = T
(

In−1 0
0′ 0

)
T′ = T1T′1 .

It is interesting to rewrite (1) as

C(c−2V)C = C , i.e., c−2V ∈ {C−pd} .

In view of the solution to Exercise 3.10, the general expression for c−2V ∈
{C−pd} is

c−2V = C + 1f ′T′1 + T1f1′ + δ 11′, (3)

for any f ∈ Rn−1 and δ ∈ R which satisfy

f ′f < δ . (4)

Multiplying (3) by c2 gives the general pd expression for V:

V = c2C + c21f ′T′1 + c2T1f1′ + c2δ 11′

:= c2C + 1w′T′1 + T1w1′ + c2δ 11′, (5)

which is of the form (2).
Baksalary & Puntanen (1990b) show that the sets specified by (b) and (2)

are equal. Let’s copy part their proof here.
Because the columns of (T1 : 1) span the entire Rn, it is clear that a in

(b) can be uniquely decomposed as a = T1a1 + γ1 for some a1 ∈ Rn−1 and
γ ∈ R, and hence

T1a1 = a − γ1 ,
T1a11′ = a1′ − γ11′, 1a′1T′1 = 1a′ − γ11′.

Choosing w = a1 in (b) yields

V = c2C + a1′ + 1a′ − 2γ11′ + ν11′

= c2C + a1′ + 1a′ + (ν − 2γ)11′

= c2(I− J) + a1′ + 1a′ + n(ν − 2γ)J .

Substituting then c2 = α2 and ν = 2γ +α2/n into (2) yields (b). This shows
that the class (2) includes all matrices having the structure (b); (b) is called
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the class of Baldessari’s structure. The converse inclusion follows similarly,
by substituting α2 = c2 and a = T1a1 + γ1, where γ = ν/2− c2/(2n).

How to confirm that the eigenvalues of

V = α2I + a1′ + 1a′ := α2I + W

are α2 + 1′a ±
√
na′a, each with multiplicity one, and α2 with multiplicity

n− 2? We observe that

ch(V) = {α2 + ch(a1′ + 1a′)} . (c)

If rk(1 : a) = 2, then q ∈ C (1 : a)⊥ as stated in the solution of Exercise
3.10, and thereby 0 is an eigenvalue of W of multiplicity 2. The remaining
two eigenvalues of W = a1′ + 1a′ are 1′a ±

√
na′a. We skip the proof.
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