15.10 Exercises: Some Solutions

(November 26, 2011)
15.1. Prove Proposition 15.5 (p. 340).

- Solution to Ex. 15.1
15.2. Prove Proposition 15.12 (p. 351).
15.3. Prove (see page 352):

$$
\tilde{\boldsymbol{\beta}}-\tilde{\boldsymbol{\beta}}_{(i)}=\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{i}_{i} \frac{\dot{\varepsilon}_{i}}{\dot{m}_{i i}}, \quad \frac{\dot{\varepsilon}_{i}}{\dot{m}_{i i}}=\tilde{\delta}=\operatorname{BLUE}\left(\delta \mid \mathscr{M}_{Z}\right)
$$

15.4. Consider the models defined as in 15.144) (p. 351). Show that the F-test statistics for testing $\delta=0$ under \mathscr{M}_{Z} is

$$
t_{i}^{2}(\mathbf{V})=\frac{\dot{\varepsilon}_{i}^{2}}{\dot{m}_{i i} \tilde{\sigma}_{(i)}^{2}}=\frac{\tilde{\delta}_{i}^{2}}{\widetilde{\operatorname{var}}\left(\tilde{\delta}_{i}\right)}
$$

where $\dot{\boldsymbol{\varepsilon}}=\dot{\mathbf{M}} \mathbf{y}=\mathbf{V}^{-1} \tilde{\boldsymbol{\varepsilon}}, \tilde{\boldsymbol{\varepsilon}}$ is the BLUE's residual, and $(n-p-1) \tilde{\sigma}_{(i)}^{2}=$ $\operatorname{SSE}_{(i)}(\mathbf{V})=\operatorname{SSE}_{Z}(\mathbf{V})$. The statistics $t_{i}^{2}(\mathbf{V})$ is a generalized version of the externally Studentized residual, cf. 8.192) (p. 182 .
15.5. Suppose that \mathbf{V} has the intraclass correlation structure and $\mathbf{1} \in \mathscr{C}(\mathbf{X})$, where $\mathbf{X}_{n \times p}$ has full column rank. Show that then $\operatorname{DFBETA}_{i}(\mathbf{V})=$ $\operatorname{DFBETA}_{i}(\mathbf{I})$. What about the equality between Cook's distance COOK_{i}^{2} and the generalized Cook's distance $\operatorname{COOK}_{i}^{2}(\mathbf{V})$?
15.6. Express the Cook's distance $\operatorname{COOK}_{i}^{2}(\mathbf{V})$ as a function of an appropriate Mahalanobis distance.
15.7. Consider a partitioned model $\mathscr{M}_{12}=\{\mathbf{y}, \mathbf{X} \boldsymbol{\beta}, \mathbf{V}\}$, where \mathbf{X} has full column rank and \mathbf{V} is positive definite. Suppose that $\hat{\boldsymbol{\beta}}_{1}$ is fully efficient under the small model $\mathscr{M}_{1}=\left\{\mathbf{y}, \mathbf{X}_{1} \boldsymbol{\beta}_{1}, \mathbf{V}\right\}$. Show that

$$
\begin{aligned}
\operatorname{eff}\left(\hat{\boldsymbol{\beta}}_{1} \mid \mathscr{M}_{12}\right)=1 \Longleftrightarrow \mathbf{X}_{1}^{\prime} \mathbf{X}_{2} \tilde{\boldsymbol{\beta}}_{2}\left(\mathscr{M}_{12}\right)=\mathbf{X}_{1}^{\prime} \mathbf{X}_{2} \hat{\boldsymbol{\beta}}_{2}\left(\mathscr{M}_{12}\right) \\
\text { Isotalo, Puntanen \& Styan (2007). }
\end{aligned}
$$

15.8. Consider the models \mathscr{M} and $\mathscr{M}_{(i)}$, defined in 15.144) (p. 351), where \mathbf{X} and $\left(\mathbf{X}: \mathbf{i}_{i}\right)$ have full column ranks. Suppose that $\hat{\boldsymbol{\beta}}=\widehat{\boldsymbol{\beta}}$ under \mathscr{M}.

Show that the equality $\hat{\boldsymbol{\beta}}_{(i)}=\tilde{\boldsymbol{\beta}}_{(i)}$ for all $i=1, \ldots, n$ holds if and only if $\mathbf{M V M}=c^{2} \mathbf{M}$ for some nonzero $c \in \mathbb{R}$.

Nurhonen \& Puntanen (1992a), Isotalo, Puntanen \& Styan (2007).
15.9. According to 8.192 (p. 182), the F-test statistic for testing the hypothesis $\delta=0$ under the model $\mathscr{M}_{Z}(\mathbf{I})=\left\{\mathbf{y}, \mathbf{X} \boldsymbol{\beta}+\mathbf{u} \delta, \sigma^{2} \mathbf{I}\right\}$, where $\mathbf{u}=\mathbf{i}_{i}$, becomes

$$
t_{i}^{2}=\frac{\mathbf{y}^{\prime} \mathbf{P}_{\mathbf{M u}} \mathbf{y}}{\frac{1}{n-p-1} \mathbf{y}^{\prime}\left(\mathbf{M}-\mathbf{P}_{\mathbf{M u}}\right) \mathbf{y}}=\frac{\hat{\varepsilon}_{i}^{2}}{\frac{1}{n-p-1} \mathrm{SSE}_{(i)} m_{i i}}
$$

which is the squared externally Studentized residual. Under the model $\mathscr{M}_{Z}(\mathbf{I})$ the test statistic t_{i}^{2} follows an F-distribution with 1 and $n-p-1$ degrees of freedom. Denote $\mathscr{M}_{Z}(\mathbf{V})=\left\{\mathbf{y}, \mathbf{X} \boldsymbol{\beta}+\mathbf{u} \delta, \sigma^{2} \mathbf{V}\right\}$. Prove that under the model $\mathscr{M}_{Z}(\mathbf{V}): t_{i}^{2} \sim \mathrm{~F}(1, n-p-1) \Longleftrightarrow \mathbf{M V M}=c^{2} \mathbf{M}$ for some $c \neq 0$.
Nurhonen \& Puntanen 1991, Rao \& Mitra 1971b. Ch. 9).
15.10. Write up the solution to Exercise 15.9 when $\mathbf{Z}=\left(\mathbf{1}: \mathbf{i}_{n}\right)$. Moreover, confirm that the following statements are equivalent:
(a) $\mathbf{C V C}=c^{2} \mathbf{C}$ for some $c \neq 0$,
(b) $\mathbf{V}=\alpha^{2} \mathbf{I}+\mathbf{a} \mathbf{1}^{\prime}+\mathbf{1 a}^{\prime}$, where \mathbf{a} is an arbitrary vector and α is any scalar ensuring the positive definiteness of \mathbf{V}.

Above \mathbf{C} denotes the centering matrix. Confirm also that the eigenvalues of \mathbf{V} in (b) are $\alpha^{2}+\mathbf{1}^{\prime} \mathbf{a} \pm \sqrt{n \mathbf{a}^{\prime} \mathbf{a}}$, each with multiplicity one, and α^{2} with multiplicity $n-2$. These results appear useful when studying the robustness of the Grubbs's test for detecting a univariate outlier.

Baksalary \& Puntanen (1990b), Baksalary, Nurhonen \& Puntanen (1992),
Lehman \& Young (1993), Markiewicz (2001).

- Solution to Ex. 15.10

Consider first the equation

$$
\begin{equation*}
\mathbf{C V C}=c^{2} \mathbf{C}, \quad \text { where } c \neq 0 \tag{1}
\end{equation*}
$$

Our task is is to characterize all positive definite matrices \mathbf{V} which satisfy (1). Baksalary \& Puntanen (1990b) proceed by using Theorem 2 of Baksalary (1984), which gives the following general positive definite solution:

$$
\begin{equation*}
\mathbf{V}=c^{2} \mathbf{C}+\mathbf{T}_{1} \mathbf{w} \mathbf{1}^{\prime}+\mathbf{1} \mathbf{w}^{\prime} \mathbf{T}_{1}^{\prime}+\nu \mathbf{1 1}^{\prime} \tag{2}
\end{equation*}
$$

where ν is an arbitrary scalar and $\mathbf{w} \in \mathbb{R}^{n-1}$ is an arbitrary vector satisfying the condition

$$
\mathbf{w}^{\prime} \mathbf{w}<c^{2} \nu
$$

Here, as in the solution of Exercise 3.10 (p. 104),

$$
\mathbf{T}=\left(\mathbf{t}_{1}: \ldots: \mathbf{t}_{n-1}: \mathbf{t}_{n}\right)=\left(\mathbf{T}_{1}: \frac{1}{\sqrt{n}} \mathbf{1}_{n}\right)
$$

where the vectors \mathbf{t}_{i} are the orthonormal eigenvectors of \mathbf{C} and \mathbf{C} has the eigenvalue decomposition

$$
\mathbf{C}=\mathbf{T} \boldsymbol{\Lambda} \mathbf{T}^{\prime}=\mathbf{T}\left(\begin{array}{cc}
\mathbf{I}_{n-1} & \mathbf{0} \\
\mathbf{0}^{\prime} & 0
\end{array}\right) \mathbf{T}^{\prime}=\mathbf{T}_{1} \mathbf{T}_{1}^{\prime}
$$

It is interesting to rewrite (1) as

$$
\mathbf{C}\left(c^{-2} \mathbf{V}\right) \mathbf{C}=\mathbf{C}, \quad \text { i.e., } \quad c^{-2} \mathbf{V} \in\left\{\mathbf{C}_{\mathrm{pd}}^{-}\right\}
$$

In view of the solution to Exercise 3.10, the general expression for $c^{-2} \mathbf{V} \in$ $\left\{\mathbf{C}_{\mathrm{pd}}^{-}\right\}$is

$$
\begin{equation*}
c^{-2} \mathbf{V}=\mathbf{C}+\mathbf{1 f}^{\prime} \mathbf{T}_{1}^{\prime}+\mathbf{T}_{1} \mathbf{f} \mathbf{1}^{\prime}+\delta \mathbf{1 1}^{\prime} \tag{3}
\end{equation*}
$$

for any $\mathbf{f} \in \mathbb{R}^{n-1}$ and $\delta \in \mathbb{R}$ which satisfy

$$
\begin{equation*}
\mathbf{f}^{\prime} \mathbf{f}<\delta \tag{4}
\end{equation*}
$$

Multiplying (3) by c^{2} gives the general pd expression for \mathbf{V} :

$$
\begin{align*}
\mathbf{V} & =c^{2} \mathbf{C}+c^{2} \mathbf{1} \mathbf{f}^{\prime} \mathbf{T}_{1}^{\prime}+c^{2} \mathbf{T}_{1} \mathbf{f} \mathbf{1}^{\prime}+c^{2} \delta \mathbf{1 1}^{\prime} \\
& :=c^{2} \mathbf{C}+\mathbf{1} \mathbf{w}^{\prime} \mathbf{T}_{1}^{\prime}+\mathbf{T}_{1} \mathbf{w} \mathbf{1}^{\prime}+c^{2} \delta \mathbf{1} \mathbf{1}^{\prime} \tag{5}
\end{align*}
$$

which is of the form (2).
Baksalary \& Puntanen (1990b) show that the sets specified by (b) and (2) are equal. Let's copy part their proof here.

Because the columns of $\left(\mathbf{T}_{1}: \mathbf{1}\right)$ span the entire \mathbb{R}^{n}, it is clear that a in (b) can be uniquely decomposed as $\mathbf{a}=\mathbf{T}_{1} \mathbf{a}_{1}+\gamma \mathbf{1}$ for some $\mathbf{a}_{1} \in \mathbb{R}^{n-1}$ and $\gamma \in \mathbb{R}$, and hence

$$
\begin{gathered}
\mathbf{T}_{1} \mathbf{a}_{1}=\mathbf{a}-\gamma \mathbf{1} \\
\mathbf{T}_{1} \mathbf{a}_{1} \mathbf{1}^{\prime}=\mathbf{a} \mathbf{1}^{\prime}-\gamma \mathbf{1} \mathbf{1}^{\prime}, \quad \mathbf{1} \mathbf{a}_{1}^{\prime} \mathbf{T}_{1}^{\prime}=\mathbf{1} \mathbf{a}^{\prime}-\gamma \mathbf{1 1}^{\prime}
\end{gathered}
$$

Choosing $\mathbf{w}=\mathbf{a}_{1}$ in (b) yields

$$
\begin{aligned}
\mathbf{V} & =c^{2} \mathbf{C}+\mathbf{a} \mathbf{1}^{\prime}+\mathbf{1} \mathbf{a}^{\prime}-2 \gamma \mathbf{1 1} \mathbf{1}^{\prime}+\nu \mathbf{1 1}^{\prime} \\
& =c^{2} \mathbf{C}+\mathbf{a} \mathbf{1}^{\prime}+\mathbf{1} \mathbf{a}^{\prime}+(\nu-2 \gamma) \mathbf{1 1}^{\prime} \\
& =c^{2}(\mathbf{I}-\mathbf{J})+\mathbf{a} \mathbf{1}^{\prime}+\mathbf{1 a}^{\prime}+n(\nu-2 \gamma) \mathbf{J}
\end{aligned}
$$

Substituting then $c^{2}=\alpha^{2}$ and $\nu=2 \gamma+\alpha^{2} / n$ into (2) yields (b). This shows that the class (2) includes all matrices having the structure (b); (b) is called
the class of Baldessari's structure. The converse inclusion follows similarly, by substituting $\alpha^{2}=c^{2}$ and $\mathbf{a}=\mathbf{T}_{1} \mathbf{a}_{1}+\gamma \mathbf{1}$, where $\gamma=\nu / 2-c^{2} /(2 n)$.

How to confirm that the eigenvalues of

$$
\mathbf{V}=\alpha^{2} \mathbf{I}+\mathbf{a 1}^{\prime}+\mathbf{1 a}^{\prime}:=\alpha^{2} \mathbf{I}+\mathbf{W}
$$

are $\alpha^{2}+\mathbf{1}^{\prime} \mathbf{a} \pm \sqrt{n \mathbf{a}^{\prime} \mathbf{a}}$, each with multiplicity one, and α^{2} with multiplicity $n-2$? We observe that

$$
\begin{equation*}
\operatorname{ch}(\mathbf{V})=\left\{\alpha^{2}+\operatorname{ch}\left(\mathbf{a} \mathbf{1}^{\prime}+\mathbf{1} \mathbf{a}^{\prime}\right)\right\} \tag{c}
\end{equation*}
$$

If $\operatorname{rk}(\mathbf{1}: \mathbf{a})=2$, then $\mathbf{q} \in \mathscr{C}(\mathbf{1}: \mathbf{a})^{\perp}$ as stated in the solution of Exercise 3.10, and thereby 0 is an eigenvalue of \mathbf{W} of multiplicity 2 . The remaining two eigenvalues of $\mathbf{W}=\mathbf{a} \mathbf{1}^{\prime}+\mathbf{1 a}^{\prime}$ are $\mathbf{1}^{\prime} \mathbf{a} \pm \sqrt{n \mathbf{a}^{\prime} \mathbf{a}}$. We skip the proof.

Some references; those not appearing in the Tricks References, written in full:

Chaganty, N. Rao \& Vaish, A. K. (1997). An invariance property of common statistical tests. Linear Algebra and its Applications, 264, 421-437.
Farebrother, R. W. (1987). Three theorems with applications to Euclidean distance matrices. Linear Algebra and its Applications, 95, 11-16.
Jensen, D. R. (1996). Structured dispersion and validity in linear inference. Linear Algebra and its Applications, 249, 189-196.
Jensen, D. R. \& Srinivasan, S. S. (2004). Matrix equivalence classes with applications. Linear Algebra and its Applications, 388, 249-260.
Mathew (1985).
Sharpe, G. E. \& Styan, G. P. H. (1965). Circuit duality and the general network inverse. IEEE Trans. Circuit Theory CT-12, 22-27.
Styan \& Subak-Sharpe (1997).

