18.11 Exercises: Some Solutions (February 8, 2012)

18.1. Let $\mathbf{A}_{2 \times 2}$ be symmetric. Show that

$$
\text { (a) } \mathbf{A} \geq_{\mathrm{L}} \mathbf{0} \Longleftrightarrow \text { (b) } \operatorname{tr}(\mathbf{A}) \geq 0 \text { and } \operatorname{det}(\mathbf{A}) \geq 0
$$

- Solution to Ex. 18.1

Proof of $(\mathrm{a}) \Longrightarrow(\mathrm{b})$:
$\mathbf{A} \geq_{\mathrm{L}} \mathbf{0} \Longrightarrow \lambda_{1} \geq 0, \lambda_{2} \geq 0 \Longrightarrow \operatorname{tr}(\mathbf{A})=\lambda_{1}+\lambda_{2} \geq 0, \operatorname{det}(\mathbf{A})=\lambda_{1} \lambda_{2} \geq$
0.

Proof of $(\mathrm{b}) \Longrightarrow(\mathrm{a})$:
$\operatorname{det}(\mathbf{A})=\lambda_{1} \lambda_{2} \geq 0 \Longrightarrow \lambda_{i} \geq 0$, for $i=1,2$ or $\lambda_{i} \leq 0$, for $i=1,2$. Using $\operatorname{tr}(\mathbf{A})=\lambda_{1}+\lambda_{2} \geq 0$ forces $\lambda_{i} \geq 0$, for $i=1,2$.

Figure 18.1 (See Exercise 18.6) A 95% confidence region for the observations from $\mathrm{N}_{2}(\mathbf{0}, \boldsymbol{\Sigma})$.
18.2 (This is Ex. 18.6). The points inside the ellipse

$$
\mathcal{A}=\left\{\mathbf{z} \in \mathbb{R}^{2}:(\mathbf{z}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{z}-\boldsymbol{\mu})=\chi_{\alpha, 2}^{2}\right\}
$$

form a $100(1-\alpha) \%$ confidence region for the observations from $\mathrm{N}_{2}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$; see Figure 18.1. Assume that we have 10000 observations from \mathbf{z} and that $\boldsymbol{\mu}=\mathbf{0}, \boldsymbol{\Sigma}=\left(\begin{array}{l}1 \\ \varrho \\ \varrho \\ 1\end{array}\right)$.
(a) What is your guess for the regression line when y is explained by x (and the constant).
(b) Find the vector $\mathbf{a}=\binom{a_{1}}{a_{2}}$ in Figure 18.1 when $\alpha=0.05$. $\left[a_{1}^{2}=\sigma^{2} \chi_{0.05,2}^{2}=\chi_{0.05,2}^{2}\right]$
(c) What is the cosine of the angle between the regression line and the major axis.
(d) Why is $a_{1}>1.96$?

- Solution to Ex. 18.6

The vector $\mathbf{a}=\binom{a_{1}}{a_{2}}$ satisfies the equation of the ellipse \mathcal{A} and it must lie also on the regression line whose equation is now $y=\varrho x$:

$$
a_{2}=\varrho a_{1}, \quad\left(a_{1}, a_{2}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\binom{a_{1}}{a_{2}}=\chi_{\alpha, 2}^{2}
$$

Suppose that $\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma^{2}(=1$ in Figure 18.1), so that

$$
\boldsymbol{\Sigma}^{-1}=\left(\begin{array}{cc}
\sigma^{2} & \sigma^{2} \varrho \\
\sigma^{2} \varrho & \sigma^{2}
\end{array}\right)^{-1}=\frac{1}{\sigma^{2}\left(1-\varrho^{2}\right)}\left(\begin{array}{cc}
1 & -\varrho \\
-\varrho & 1
\end{array}\right)
$$

Substituting $a_{2}=\varrho a_{1}$ into \mathcal{A} :

$$
\begin{aligned}
\left(a_{1}, \varrho a_{1}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\binom{a_{1}}{\varrho a_{1}} & =\frac{a_{1}^{2}}{\sigma^{2}\left(1-\varrho^{2}\right)}(1, \varrho)^{\prime}\left(\begin{array}{cc}
1 & -\varrho \\
-\varrho & 1
\end{array}\right)\binom{1}{\varrho} \\
& =\frac{a_{1}^{2}}{\sigma^{2}\left(1-\varrho^{2}\right)}\left(1+\varrho^{2}-2 \varrho^{2}\right) \\
& =\frac{1}{\sigma^{2}\left(1-\varrho^{2}\right)}\left(1-\varrho^{2}\right)=\frac{a_{1}^{2}}{\sigma^{2}} \\
& =\chi_{\alpha, 2}^{2},
\end{aligned}
$$

from which a_{1} is

$$
a_{1}=\sigma \sqrt{\chi_{\alpha, 2}^{2}}=\sigma 2.45 \quad \text { if } \alpha=0.05
$$

Notice that 95% of the probability mass of the distribution of x lies in the interval $(-1.96 \sigma, 1.96 \sigma)$. This interval is shorter than $\left(-a_{1}, a_{1}\right)=$ $(-2.45 \sigma, 2.45 \sigma)$

The eigenvalues of $\boldsymbol{\Sigma}$ are $\sigma^{2}(1+\varrho)$ ja $\sigma^{2}(1-\varrho)$ and the corresponding eigenvectors are

$$
\mathbf{t}_{1}=\frac{1}{\sqrt{2}}\binom{1}{1}, \quad \mathbf{t}_{2}=\frac{1}{\sqrt{2}}\binom{1}{-1}
$$

If $\varrho>0$, then the slope of the first principle axis is 1 . The cosine of the angle between the regression line and the first principle axis is
18.11 Exercises: Some Solutions (February 8, 2012)

$$
\cos \left(\binom{1}{1},\binom{1}{\varrho}\right)=\frac{1+\varrho}{\sqrt{2\left(1+\varrho^{2}\right)}}
$$

