18.11 Exercises: Some Solutions (February 8, 2012)

18.1. Let $\mathbf{A}_{2\times 2}$ be symmetric. Show that

(a) $\mathbf{A} \geq_{\mathsf{L}} \mathbf{0} \iff$ (b) $\operatorname{tr}(\mathbf{A}) \geq 0$ and $\operatorname{det}(\mathbf{A}) \geq 0$.

• Solution to Ex. 18.1:

Proof of (a) \implies (b): $\mathbf{A} \geq_{\mathsf{L}} \mathbf{0} \implies \lambda_1 \geq 0, \lambda_2 \geq 0 \implies \operatorname{tr}(\mathbf{A}) = \lambda_1 + \lambda_2 \geq 0, \operatorname{det}(\mathbf{A}) = \lambda_1 \lambda_2 \geq 0$. Proof of (b) \implies (a): $\operatorname{det}(\mathbf{A}) = \lambda_1 \lambda_2 \geq 0 \implies \lambda_i \geq 0, \text{ for } i = 1, 2 \text{ or } \lambda_i \leq 0, \text{ for } i = 1, 2$. Using $\operatorname{tr}(\mathbf{A}) = \lambda_1 + \lambda_2 \geq 0 \text{ forces } \lambda_i \geq 0, \text{ for } i = 1, 2$. \Box

Figure 18.1 (See Exercise 18.6) A 95% confidence region for the observations from $N_2(0, \Sigma)$.

18.2 (This is Ex. 18.6). The points inside the ellipse

$$\mathcal{A} = \left\{ \mathbf{z} \in \mathbb{R}^2 \colon (\mathbf{z} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{z} - \boldsymbol{\mu}) = \chi^2_{\alpha, 2} \right\}$$

form a 100(1- α)% confidence region for the observations from N₂(μ , Σ); see Figure 18.1. Assume that we have 10 000 observations from \mathbf{z} and that $\mu = \mathbf{0}, \Sigma = \begin{pmatrix} 1 & \varrho \\ \varrho & 1 \end{pmatrix}$.

- (a) What is your guess for the regression line when y is explained by x (and the constant).
- (b) Find the vector $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ in Figure 18.1 when $\alpha = 0.05$. $[a_1^2 = \sigma^2 \chi^2_{0.05,2} = \chi^2_{0.05,2}]$
- (c) What is the cosine of the angle between the regression line and the major axis.
- (d) Why is $a_1 > 1.96$?

• Solution to Ex. 18.6

The vector $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ satisfies the equation of the ellipse \mathcal{A} and it must lie also on the regression line whose equation is now $y = \rho x$:

$$a_2 = \rho a_1, \qquad (a_1, a_2)' \mathbf{\Sigma}^{-1} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \chi^2_{\alpha, 2}.$$

Suppose that $\sigma_x^2 = \sigma_y^2 = \sigma^2 (= 1$ in Figure 18.1), so that

$$\boldsymbol{\Sigma}^{-1} = \begin{pmatrix} \sigma^2 & \sigma^2 \varrho \\ \sigma^2 \varrho & \sigma^2 \end{pmatrix}^{-1} = \frac{1}{\sigma^2 (1 - \varrho^2)} \begin{pmatrix} 1 & -\varrho \\ -\varrho & 1 \end{pmatrix}.$$

Substituting $a_2 = \rho a_1$ into \mathcal{A} :

$$(a_1, \varrho a_1)' \mathbf{\Sigma}^{-1} \begin{pmatrix} a_1\\ \varrho a_1 \end{pmatrix} = \frac{a_1^2}{\sigma^2 (1 - \varrho^2)} (1, \varrho)' \begin{pmatrix} 1 & -\varrho\\ -\varrho & 1 \end{pmatrix} \begin{pmatrix} 1\\ \varrho \end{pmatrix}$$
$$= \frac{a_1^2}{\sigma^2 (1 - \varrho^2)} (1 + \varrho^2 - 2\varrho^2)$$
$$= \frac{1}{\sigma^2 (1 - \varrho^2)} (1 - \varrho^2) = \frac{a_1^2}{\sigma^2}$$
$$= \chi^2_{\alpha, 2},$$

from which a_1 is

$$a_1 = \sigma \sqrt{\chi^2_{\alpha, 2}} = \sigma 2.45$$
 if $\alpha = 0.05$.

Notice that 95% of the probability mass of the distribution of x lies in the interval $(-1.96\sigma, 1.96\sigma)$. This interval is shorter than $(-a_1, a_1) = (-2.45\sigma, 2.45\sigma)$

The eigenvalues of Σ are $\sigma^2(1+\varrho)$ ja $\sigma^2(1-\varrho)$ and the corresponding eigenvectors are

$$\mathbf{t}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \quad \mathbf{t}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}.$$

If $\rho > 0$, then the slope of the first principle axis is 1. The cosine of the angle between the regression line and the first principle axis is

408

18.11 Exercises: Some Solutions (February 8, 2012)

$$\cos\left(\begin{pmatrix}1\\1\end{pmatrix},\begin{pmatrix}1\\\varrho\end{pmatrix}\right) = \frac{1+\varrho}{\sqrt{2(1+\varrho^2)}}.$$

409