Abstract
In this position paper we argue of the need for a more complete definition of gaze interaction events. The need is especially clear in non-desktop use scenarios. We ask on one hand what the needed gaze events are and on the other hand what can eye tracking technology possibly deliver in dynamic everyday settings. Current understanding on gaze events works well for static scenes often encountered in laboratory studies and desktop computing, but we need to expand or modify the notions when moving out from lab. We need a better understanding of what is meant by gaze events and what kind of events need to be recognized to push forward the utilization of gaze tracking technology.

Author Keywords
Gaze tracking; gaze event; gaze interaction.

ACM Classification Keywords
H.5.2. User interfaces: Input devices and strategies.

General Terms
Human Factors; Design.

Introduction
There is a long history of gaze tracking technology research [6,11], and a number of different use cases and applications have been identified for eye movement data. For examples, see, [3,6,9,11].

In some areas, like marketing, usability and user experience studies, gaze tracker is a common tool to analyze user behavior. Gaze tracker is used also in neuroscience and psychology to get insights of physiological and cognitive processes. In these applications the gaze tracker is usually passive as it records eye movements for later off-line analysis.

A gaze tracker can also be an active component in real-time systems, where gaze data provides input for human-computer interaction. Eyes are then often used intentionally to point or select [5,9].

Another important active use is to observe and assess the user’s cognitive context from his/her gaze data [1].
This information could be used, for example, in interactive advertising that changes content depending on products that were just looked at and interested the user.

All the examples described above would require the gaze tracker and other parts of the system to generate relevant gaze interaction events. In some cases, like when moving outdoors, a very rich set of events is available, of gaze related to user, environment, and objects of interest.

Most gaze trackers are still not mass produced and, therefore, expensive. It is expected, however, that the technologies will mature and the price will become reasonable for increased use (e.g. [7,8]).

In the next section we discuss the use of gaze interaction in different environments. Gaze interaction events are important, and need to be defined with care.

Need for Gaze Interaction Events

An active, gaze tracker based system would consist of several parts. The gaze tracker itself would locate the eyes and measure the gaze direction. If display is used, some parts of the system would generate graphics for it, while other parts would handle the keyboard and other accessories. Still other parts would relate the position and pose of the user to the environment and objects. The logic of application would run separately, collecting events from all these parts, changing internal states and sending commands, as needed.

The current definitions of gaze interaction events work well when in front of a fixed display (e.g., GazeEnter and GazeLeave in [12]). As we know the layout of the objects, the gaze interaction events can easily be defined similarly to mouse events.

However, if we use a gaze tracker when the view is not fixed, gaze interaction events are different. We still know and notice the direction and movements of the gaze. However, eyes may be tracking moving objects and the object fixated on may change without eye movements.

A natural member of the set of low-level events is the gaze fixation [10]. Another often used event type is the gaze gesture, which consist of a sequence of distinct gaze directions [4]. The gestures can be defined without a reference location [2], or tied to a certain object or locations in environment [5]. The active analysis of context information from the user’s eye gaze information [1] might also generate gaze events.

In an everyday setting, say, a person sitting and looking a moving car passing by, the gaze tracking system would give, at least, the following events at regular intervals: GazeDirection, GazeMove (as eyes move rel. to head), GazeEnvMove (as gaze moves with car), GazeObjectOver (as gaze aligns with object), GazeObjectContinue (as gaze is still fixated).

Categories of Gaze interaction events
The following table is one categorization of gaze interaction events that we are working on for a generic use of gaze trackers:
<table>
<thead>
<tr>
<th>Generic</th>
<th>Head centric</th>
<th>Environment centric</th>
<th>Object centric</th>
</tr>
</thead>
<tbody>
<tr>
<td>events based only on eye properties and dynamics</td>
<td>events recognized by gaze tracker, directions relative to head of user</td>
<td>events where gaze direction relative to static environment, needs some external sensors</td>
<td>events where gaze direction relative to objects in view, can be static on display, can be moving objects</td>
</tr>
<tr>
<td>EyesOpen, eyes are found and open</td>
<td>GazeFound, gaze direction has been determined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EyesClosed, eyes are closed (not found)</td>
<td>GazeLost, gaze direction has been lost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GazeDirection, regular update of gaze direction</td>
<td>GazeEnvDirection, regular update of gaze direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GazeMove, direction changed</td>
<td>GazeEnvMove, direction changed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GazeDwell, triggered when gaze has stayed still for predefined duration</td>
<td>GazeEnvDwell, gaze still on environment for predefined duration</td>
<td>GazeObjectDwell, gaze stays still on object for predefined duration</td>
<td>GazeObjectDwell, gaze stays still on object for predefined duration</td>
</tr>
<tr>
<td>FixationStart, gaze on one direction long enough, can be noticed after a delay</td>
<td>FixationEnvStart, gaze on one direction for long enough</td>
<td>FixationObjectStart, gaze on one object for long enough</td>
<td>FixationObjectStart, gaze on one object for long enough</td>
</tr>
<tr>
<td>FixationContinue, gaze stays on same direction</td>
<td>FixationEnvContinue, gaze stays on same direction</td>
<td>FixationObjectContinue, gaze stays on same object</td>
<td>FixationObjectContinue, gaze stays on same object</td>
</tr>
<tr>
<td>FixationEnd, gaze changes direction</td>
<td>FixationEnvEnd, gaze changes direction</td>
<td>FixationObjectEnd, gaze direction moves from object</td>
<td>FixationObjectEnd, gaze direction moves from object</td>
</tr>
<tr>
<td>GazeGesture, tracker recognizes a gaze pattern</td>
<td>GazeEnvGesture, gaze pattern or gesture</td>
<td>GazeObjectGesture, gaze pattern or gesture on object</td>
<td>GazeObjectGesture, gaze pattern or gesture on object</td>
</tr>
</tbody>
</table>
Conclusion
Plenty of work has been done on gaze tracker technology. The technology is now reaching the state where it will move from laboratories to wider use, and we need to prepare for that. The applications, so far, have been mostly restricted to rather small trials and very tightly defined use cases, and they have usually used a small set of situation-specific definitions of gaze interaction units, events.

In this paper we want to discuss possibilities for better formalization of gaze interaction events especially in dynamic situations. What types of gaze events are needed now and in the foreseeable future? What types of software components and interfaces would be useful in general?

Acknowledgements
We thank the members of TAUCHI unit who provided helpful comments on different versions of this paper. This work was funded by the Academy of Finland, project Haptic Gaze Interaction (decisions numbers 260026 and 260179).

References