More Triangles! A Note on the Cactus-Tree Heuristic

Timo Poranen

University of Tampere
Department of Computer Sciences
33014 University of Tampere
email: tp@cs.uta.fi
Presentation structure

 – Suppose that a researcher has found a new algorithm for a problem. How to give a (scientific) description about the algorithm?

 – Manuscript describes a new approximation algorithm for the maximum planar subgraph problem.
Definitions

- A undirected, simple graph G denoted $G = (V, E)$ consists of a finite vertex set V and set of undirected edges $E \subseteq \{(v, u) \mid v \in V, u \in V, v \neq u\}$.

- Throughout this presentation, we consider only undirected simply graphs (i.e. there are no parallel edges or self-loops).

- Given a graph $G = (V, E)$, a graph $G' = (V', E')$ is called a subgraph of G if $V' \subseteq V$ and $E' \subseteq \{(v, u) \mid v \in V', u \in V' \text{ and } (v, u) \in E\}$.

- Let $G = (V, E)$ be a graph and let $E' \subseteq E$. Then graph $G' = (V', E')$ is called an edge induced subgraph of G if $V' = \{v \mid (v, u) \in E'\}$.

- If $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are subgraphs of $G = (V, E)$, then subgraph $G' = (V_1 \cup V_2, E_1 \cup E_2)$ of G is called the union of G_1 and G_2 (denoted $G_1 \cup G_2$).
Planar graphs

• A graph is usually visualized by representing each vertex through a point in the plane, and by representing each edge through a curve in the plane, connecting the points corresponding to the vertices of the edge.

• A drawing of a graph is planar if no two distinct edges intersect.

• A graph G is planar if it admits a planar drawing. Such a drawing of a planar graph is called a planar embedding of G.

• A planar graph with n vertices contains at most $3n - 6$ edges ($n \geq 3$).

• A graph G is planar if and only if it does not contain a subgraph homeomorphic to K_5 or $K_{3,3}$ (Kuratowski 1930).
Planarity testing

• Testing whether a graph is planar or not can be done in linear time using classical planarity testing algorithm of Hopcroft-Tarjan.

• Hopcroft-Tarjan’s algorithm uses depth-first search and makes “some” calculations during it.

• There are more planarity testing algorithms:
 – Booth and Lueker’s algorithm which uses a data structure called \(PQ \)-trees.
 – A new algorithm of Shih and Hsu based on PC-trees.
Maximal planar subgraphs

• Let G' be a subgraph of a graph G. If G' is planar, then G' is a planar subgraph of G.

• If a graph $G' = (V', E')$ is a planar subgraph of $G = (V, E)$ such that every graph $G'' \in (V, E' \cup \{e\} \mid e \in E \setminus E')$ is nonplanar, then G' is called a maximal planar subgraph of G.

• The problem is solvable in polynomial time by using any (polynomial time) planarity testing algorithm.
Maximum planar subgraphs

- If a graph $G' = (V, E')$ is a planar subgraph of $G = (V, E)$ such that there is no planar subgraph $G'' = (V, E'')$ of G with $|E''| > |E'|$, then G is called a maximum planar subgraph of G.

- A maximal planar subgraph is maximal with respect to inclusion of its edge set, whereas a maximum planar subgraph is maximal with respect to the cardinality of its edge set.

- The problem of finding a maximum planar subgraph of given graph is NP-hard (Liu and Geldmacher 1977, Yannakakis 1978).

- Numerous approximation algorithms exists in the literature.

- Problem has applications in VLSI-circuit design, facility layout and graph drawing.
Examples from planarity and planar subgraphs

Figure 1: G is a nonplanar graph. Note that G contains $K_{3,3}$ as a minor. G_1 is a planar subgraph of G, but it is not a maximal planar subgraph: Edge $(1, 5)$ can be added to G_1 without destroying planarity. The result is G_2. Another maximal planar subgraph of G is G_3. Graph G_3 is also a maximum planar subgraph.
Outerplanar graphs

• A planar graph is outerplanar if it admits a plane drawing where all its vertices lie on the same face and no two distinct edges intersect.

• Maximum and maximal outerplanar subgraphs are defined in the similar way as the maximum and maximal planar subgraphs.

• An outerplanar graph with n vertices contains at most $2n - 3$ edges.

• A graph G is outerplanar if and only if it does not contain a subgraph homeomorphic to K_4 or $K_{3,2}$ (Chartland and Harary 1967).
Outerplanarity example

Figure 2: An outerplanar graph and forbidden subgraphs K_4 and $K_{3,3}$.
Approximation algorithms

- An approximation algorithm gives always a solution for a given computational problem.
- It is possible that this solution is not optimal!
- The performance ratio R_A of an approximation algorithm A is the worst case ratio of obtained solutions to the cost of optimal solution:

$$R_A = \min \frac{A(G)}{OPT(G)}, \text{ where } OPT(G) \neq 0$$

and where G is any possible input graph (if $OPT(G) = 0$, then divider is set to 1).
- The ratio is always at most 1 and the algorithm produces better approximations if the ratio is closer to 1.
How to prove the performance ratio?

• First, prove that the performance ratio $R_A \leq k$, where $k \in \mathbb{R}$.

 -- To prove the upper bound it is sometimes possible to construct such a problem instance that the claimed upper bound is achieved. Only one such instance is enough!

• Second, prove that the performance ratio $R_A \geq l$, where $l \in \mathbb{R}$.

 -- This is often the hardest part. Now we have to show that the lower bound holds for all possible problem instances!

• If now $k = l$, then we have $R_A(I) = k$, otherwise $l \leq R_A \leq k$.

Spanning tree heuristic

- One way to approximate the maximum planar subgraph problem is to produce a spanning tree of the input graph.
- Without loss of generality, we may assume that graph is connected.
- For a graph with n vertices, the spanning tree contains $n - 1$ edges.
- Since a planar subgraph contains at most $3n - 6$ edges, the ratio of the edges in a spanning tree and the “best possible solution” is at most $1/3$ as n tends to infinity:

$$
\lim_{n \to \infty} \frac{n - 1}{3n - 6} = \frac{1}{3}.
$$

- Since a spanning tree contains always $n - 1$ edges, the ratio is at least $1/3$. Therefore, the performance ratio of the spanning tree heuristic is $1/3$.
Greedy algorithm

- Any algorithm that *just scans the edges in some order* and tries to add them to the planar subgraph, yields an algorithm with performance ratio $1/3$.

input: graph $G = (V, E)$
output: maximal planar subgraph G' of G

 let $G' = (V, E')$, where $E' = \emptyset$;
 forall edges in E do
 add e to E';
 if (V, E') is not planar
 delete e from E';
 od
 output G';
end;
Cactus-tree heuristic

- Cactus-tree heuristic was first approximation algorithm with non-trivial performance ratio (J. Algorithms, 1998).
- Heuristic is based on searching triangles, that do not violate the planarity, from the input graph.
- A **triangular structure** is a graph whose cycles, if any, are triangles.
- A **triangular cactus** is a graph whose cycles, if any, are triangles and such that all edges belong to some cycle.
- Algorithms searched first a triangular cactus and then connects it (if cactus was unconnected) to obtain a triangular structure.
- If a (suitable) triangular cactus is searched from the input graph, it guarantees performance ratio 7/18.
- If a maximum triangular cactus is searched, it guarantees performance ratio 4/9.
Algorithm A: Cactus-tree heuristic

Input: A graph $G = (V, E)$

Output: A planar subgraph $G' = (V, E')$ of G

begin (phase 1)

set $E' = \emptyset$

while there is a triangle T in G with edges $(v_1, v_2), (v_2, v_3), (v_3, v_1)$ in (V, E) such that all vertices of T belong to different components in G' **do**

set $E' = E' \cup \{(v_1, v_2), (v_2, v_3), (v_3, v_1)\}$

end (components of $G' = (V, E')$ are now triangular cactusses)

begin (phase 2)

while there is an edge $(v_1, v_2) \in E$ such that v_1 and v_2 belong to different components in G' **do**

set $E' = E' \cup \{(v_1, v_2)\}$

return (V, E')

end; (G' is now a triangular structure)
Analysis of the cactus-tree heuristic

• The performance ratio of Algorithm A for the maximum planar subgraph problem is $7/18$ and it runs in linear time for bounded-degree graphs.

• The proof of the lower bound is of “medium” complexity. Proof is based on the following observation:
 A triangle was not added to G' if two of its vertices were already in the same component in G'.

• To prove the upper bound a sample graph was given.

• If the Phase 1 of Algorithm A is modified so that it searches the maximum triangular cactus, this leads to a $4/9$ approximation algorithm which runs in $O(m^{3/2}n \log^6 n)$ time.

• This better algorithm is very complicated (to prove and to implement). No known implementations!
Modified cactus-tree heuristic

- When a triangle is found in Algorithm A, it always connects three vertices from different components of G'.

- It is easy to see that all the vertices of a triangle need not to belong to different components of G'' in Phase 1 of Algorithm A:
 - It is enough to have two vertices v_1 and v_2 joined by an edge (v_1, v_2) in one component and the third vertex v_3 in other component forming a triangle $\{(v_1, v_2), (v_2, v_3), (v_3, v_1)\}$
 - If we want to approximate outerplanar subgraphs, we need a restriction that the edge (v_1, v_2) belongs to at most two triangles at the same time.

- Algorithm A' tries first to connect one vertex from another component with two new edges adjacent to vertices joined by an edge in another component,

- or uses same triangle adding strategy as the algorithm A.
Modified cactus-tree heuristic

Algorithm A’: Modified cactus-tree heuristic

Input: A graph $G = (V, E)$

Output: A planar subgraph $G' = (V, E')$ of G

begin (phase 1)

set $E' = \emptyset$;

while the number of edges in E' increases during the while loop do

while there is a triangle T in G with edges $(v_1, v_2), (v_2, v_3)$ and (v_3, v_1) such that edge (v_1, v_2) belongs to one triangle in E' and v_3 to a different component in G' do

set $E' = E' \cup \{(v_2, v_3), (v_3, v_1)\}$;

if there is a triangle T in G with edges $(v_1, v_2), (v_2, v_3)$ and (v_3, v_1) such that all vertices of T belong to different components in G' do

set $E' = E' \cup \{(v_1, v_2), (v_2, v_3), (v_3, v_1)\}$;

end (components of $G' = (V, E')$ are planar)

begin (phase 2)

... connection in the same way as in the algorithm A ...

end;
Figure 3: Illustrations of the planar subgraphs for graph cimi-g4 (in the left) found by algorithms A (middle) and A' (right). Triangles are enumerated in (some possible) found order.
Performance analysis of A’

• The performance ratio of Algorithm A for the maximum planar subgraph problem is at least 7/18.
 – There is no such a triangle T in the input graph after Phase 1 that its vertices are in different components in G'.

• The performance ratio of Algorithm A for the maximum planar subgraph problem is at most 1/2.
 – The construction used for Algorithm A (skipped) does not work here. But we can use a grid graph ...
 – Let G be a $n \times n$ grid graph. Now each side of the grid contains n vertices and G has in total n^2 vertices and $2n^2 - 2n$ edges.
 – Algorithm A' finds a planar subgraph with $n^2 - 1$ edges by constructing a spanning tree of G.
 – The ratio between the number of edges found by Algorithm A' and the number of edges in G is 1/2 as n tends to infinity.
Running time analysis of A’

• It is enough to notice that in Phase 1 the step where a triangle connecting two vertices from the same component and one vertex from another component takes linear time provided that the degree of the graph is bounded.

• All other operations take linear time (the property of the original algorithm).

• Suppose that there are m edges in a graph whose degree is bounded by a constant d.

• Each time when an edge (v_1, v_2) is considered, it takes at most d^2 time to check adjacency lists of v_1 and v_2 to find a triangle.

• Since it is enough to consider each edge only once in the inner while loop, the algorithm runs in time $O(m)$.
The properties of Algorithm A’

- The performance ratio of Algorithm A’ for the maximum planar subgraph problem is at least $7/18$ and at most $1/2$, and it runs in linear time for bounded-degree graphs.

- Since there is a gap between the lower and upper bound of the performance ratio of Algorithm A’, the exact performance ratio is left open.

- Conjecture: The performance ratio of Algorithm A’ for the maximum planar subgraph problem is at least $4/9$.
Experiments

- We implemented Algorithms A and A' in $C++$.
- Algorithms were randomizes choosing vertices and edges randomly whenever it was possible.
- We used a test graph set containing 84 graphs.
- The number of edges in test graphs varied between 21 and 30380.
- Since algorithms were randomized, we performed $25 - 100$ distinct runs for each graph.
- We compared the best found solutions of both algorithms, the worst of A' against the best of A and the worst of A' against the optimal solution (if known, otherwise best known).
- The solution quality of A' is clearly better.
- The running time for the largest test graph was less than one second for A and A'.
• The best found solution of A' is up to 35 percentages better than the best found solution for A!
A’ worst vs A best

- The worst found solution of A' is up to 30 percentages better than the best found solution for A!
A’ worst vs OPT/best known

- The worst found solution of A' is never more than $6/10$ away from the optimal!
Conclusions - future work

• The exact performance ratio of the Algorithm A’ is open.
 – Ratio is at least 7/18 and at most 1/2.
 – I think it is possible to prove that the Algorithm A’ finds more edges from a graph than the size of a maximum triangular cactus is. Successful proof will verify that the ratio is at least 4/9.
 – Could the ratio be 1/2?
A worst vs OPT/best known

- Now there are instances between ratios 7/18 and 8/18!