An annotated bibliography on the thickness, outerthickness, and arboricity of a graph

Erkki Mäkinen and Timo Poranen
Faculty of Natural Sciences
FIN-33014 University of Tampere, Finland
{erkki.makinen,timo.t.poranen}@uta.fi

October 20, 2017

Abstract

This bibliography introduces literature on graph thickness, outerthickness, and arboricity. In addition to the pointers to the literature we also give some conjectures concerning known open problems on the field.

MSC2000: 05C10
Keywords: Thickness, outerthickness, arboricity.

1 Introduction

Topological graph theory studies the embeddings of graphs on various surfaces and the properties of these embeddings. This bibliography introduces literature on three classical topological invariants of graphs, namely graph thickness, outerthickness, and arboricity. Although the study of these concepts is mainly motivated by purely theoretical issues, they have also found several applications on the areas of graph drawing, information visualization, VLSI design, and resource location optimization. Obviously, it is often advantageous to consider a complicated graph in simpler slices, for example planar ones, as in the case of thickness.

In a bibliography on such a widely studied area, it is difficult to decide which results and articles are included and which are left out. We have tried to fulfill the conflicting goals of compactness and extensiveness. In addition
to the pointers to the literature we also give some conjectures concerning
known open problems on the field.

The bibliography given is most likely incomplete. The authors welcome
supplementing information by e-mail (timo.t.poranen@uta.fi).

2 Thickness

The following conjecture was given by Harary [34]:

Prove or disprove the following conjecture: For any graph G with
9 points, G or its complementary graph \overline{G} is nonplanar.

The problem is the same as determining whether K_9 is biplanar or not,
that is, a union of two planar graphs. The problem was solved independently
by Battle et al. [8] and Tutte [60] by constructing all subgraphs for K_9.
They showed that K_9 is not biplanar. Tutte [61] generalized the problem by
defining the concept of the thickness of a graph.

Definition 2.1. The graph-theoretical thickness (thickness, for short) of a
graph, denoted by $\Theta(G)$, is the minimum number of planar subgraphs into
which the graph can be decomposed.

The thickness of a planar graph is 1 and the thickness of a nonplanar
graph is at least 2. Thickness has applications, for example, in VLSI (Very
Large Scale Integration) design [1] and network design [56].

It was long an open question whether $\Theta(K_{16}) = 3$ or 4. Harary offered 10
pounds to anyone who could compute $\Theta(K_{16})$. Finally a professor of French
literature, Jean Mayer [50], won the prize by showing that $\Theta(K_{16}) = 3$.

The NP-status of thickness was solved by Mansfield.

Theorem 2.2 ([48]). Determining the thickness of a graph is NP-complete.

The only non-trivial graph classes with known thicknesses are the com-
plete graphs, complete bipartite graphs, and hypercubes. The optimal solu-
tion for the thickness of complete graphs K_n was given for almost all values
of n by Beineke and Harary [14]. A decade later Alekseev and Gonchakov
[5], and independently Vasak [62], solved the remaining cases.

Theorem 2.3 ([5, 14, 62]). For complete graphs, $\Theta(K_n) = \lfloor \frac{n+7}{6} \rfloor$, except
that $\Theta(K_9) = \Theta(K_{10}) = 3$.

See Figure 1 for a decomposition of K_9 into three planar subgraphs.

For complete bipartite graphs $K_{m,n}$, thickness is solved for almost all
values of m and n.

2
Figure 1: A minimum planar decomposition of K_9.

Theorem 2.4 ([15]). For complete bipartite graphs, $\Theta(K_{m,n}) = \lceil \frac{mn}{2(m+n-2)} \rceil$, except possibly when m and n are odd, and there exists an integer k satisfying $n = \lfloor \frac{2k(n-2)}{n-2k} \rfloor$.

If $m = n$, Theorem 2.4 has the following shorter form.

Corollary 2.5. $\Theta(K_{n,n}) = \lfloor \frac{n+5}{4} \rfloor$.

The thickness of hypercubes (an n-cube is denoted by Q_n) was determined by Kleinert [44].

Theorem 2.6 ([44]). $\Theta(Q_n) = \lceil \frac{n+1}{4} \rceil$.

Next we give two lower bounds for thickness, see Beineke et al. [15] for references concerning their origin. The first lower bound is a direct application of Euler’s polyhedron formula.

Theorem 2.7. Let $G = (V,E)$ be a graph with $|V| = n$ and $|E| = m$. Then $\Theta(G) \geq \lceil \frac{m}{3n-6} \rceil$.

If a graph does not contain any triangles, as it is for bipartite graphs, a tighter lower bound can be derived.

Theorem 2.8. Let $G = (V,E)$ be a graph with $|V| = n$, $|E| = m$ and with no triangles. Then $\Theta(G) \geq \lceil \frac{m}{2n-4} \rceil$.

The lower bounds of Theorems 2.7 and 2.8 are also the exact values for the thickness of almost all complete and complete bipartite graphs.

Wessel [64] gave lower and upper bounds for the thickness of a graph as a function of the minimum and maximum degree. The upper bound was independently given also by Halton [33].
Theorem 2.9 ([33, 64]). Let G be a graph with minimum degree δ and maximum degree Δ. Then it holds that $\left\lceil \frac{\delta + 1}{6} \right\rceil \leq \Theta(G) \leq \left\lceil \frac{\Delta}{2} \right\rceil$.

Halton [33] proved the upper bound by first augmenting the given graph to be regular, and then splitting it into disjoint cycles by using Petersen’s classical result [35], p. 90. The lower bound follows from Euler’s polyhedron formula.

Halton conjectured a stronger upper bound $\Theta(G) \leq \left\lceil \frac{\Delta + 2}{4} \right\rceil$. Sýkora et al. [59] gave a counterexample by constructing a class of regular graphs of degree d with thickness $\left\lfloor \frac{d}{2} \right\rfloor$. The construction shows that the upper bound of Theorem 2.9 is tight.

Dean et al. [27] gave an upper bound as a function of the number of edges.

Theorem 2.10 ([27]). Let G be a graph with m edges, then it holds that $\Theta(G) \leq \left\lfloor \sqrt{\frac{m}{3}} + 3 \right\rfloor$.

Czabarka et al. [24] have presented a bound for the thickness of a graph by using the crossing number of the graph in question.

The thickness of degree-constrained graphs is studied by Bose and Prabhu [16], and results for the thickness of random graphs are given by Cooper [23]. Mutzel et al. [39] have shown that the thickness of the class of graphs without K_5-minors is at most two.

The genus of a graph is the minimum genus of the orientable surface on which the graph is embeddable. Asano [6, 7] has studied the thickness of graphs with genus at most 2. Thickness results for other surfaces are reported by White and Beineke [65] and Ringel [57].

Recently, Bourke et al. [17] have studied thickness two graphs in connection with the directed reachability problem, and Albertson et al. [3, 4] have studied the thickness of r-inflated graphs.

3 Outerthickness

Instead of decomposing the graph into planar subgraphs, outerthickness seeks a decomposition into outerplanar subgraphs.

Definition 3.1. The outerthickness of a graph, denoted by $\Theta_o(G)$, is the minimum number of outerplanar subgraphs into which the graph can be decomposed.

Outerthickness seems to be studied first in Geller’s unpublished manuscript (see [35], pp. 108 and 245), where it was shown that $\Theta_o(K_7)$ is 3 by similar
exhaustive search as in the case of the thickness of K_9. See Figure 2 for a decomposition of K_7 into three outerplanar subgraphs.

The outerthickness of complete graphs was solved by Guy and Nowakowski.

Theorem 3.2 ([71]). For complete graphs, $\Theta_o(K_n) = \lceil \frac{n+1}{4} \rceil$, except that $\Theta_o(K_7) = 3$.

It is easy to show by simply counting edges that $\Theta_o(K_n) \leq \lceil \frac{n+1}{4} \rceil$, but the proof for the equality is much more complicated. It starts by considering the case $n = 4r$ in which $r + 1$ outerplanar graphs are shown to make K_{4r}. The proof is then modified to the cases $n = 4r + 1$, $4r + 2$, and $4r + 3$.

The same authors also gave optimal solutions for the outerthickness of complete bipartite graphs and hypercubes.

Theorem 3.3 ([72]). For complete bipartite graphs with $m \leq n$, $\Theta_o(K_{m,n}) = \lceil \frac{mn}{2m+n-2} \rceil$.

Theorem 3.4 ([71]). $\Theta_o(Q_n) = \lceil \frac{n+1}{3} \rceil$.

Again, it is easy to show that outerthickness reaches the given bound, while proving the equality requires a complicated case analysis.

It is possible to apply Euler’s polyhedron formula to derive lower bounds for outerthickness similarly as for the graph thickness.

Theorem 3.5 ([70]). Let $G = (V, E)$ be a graph with $|V| = n$ and $|E| = m$. Then $\Theta_o(G) \geq \lceil \frac{m}{2n-3} \rceil$.

Theorem 3.6 ([70]). Let $G = (V, E)$ be a graph with $|V| = n$, $|E| = m$ and with no triangles. Then $\Theta_o(G) \geq \lceil \frac{m}{3n/2-2} \rceil$.

The lower bounds of Theorems 3.5 and 3.6 are also the exact values for the outerthickness of complete graphs, complete bipartite graphs, and hypercubes.

The following theorem gives lower and upper bounds in the terms of minimum and maximum degree of a graph.

Figure 2: A minimum outerplanar decomposition of K_7.
Theorem 3.7 ([33, 64, 55]). For a graph with minimum degree δ and maximum degree Δ, it holds that $\lceil \delta/4 \rceil \leq \Theta_o(G) \leq \lceil \Delta/2 \rceil$.

The lower bound follows from the number of edges in maximal outerplanar graphs, while the upper bound holds as in Theorem 2.9.

Since $\Theta_o(G) \geq \Theta(G)$ and the upper bound is tight for thickness [59], it follows that the upper bound is tight also for outerthickness.

Heath [73] has shown that a planar graph can be divided into two outerplanar graphs. Therefore, $\Theta_o(G) \leq 2\Theta(G)$.

4 Arboricity

As thickness is defined using planar graphs and outerthickness by using outerplanar graphs, it is natural to continue to tighten the definition by replacing outerplanar graphs by trees. This gives us the concept of arboricity. Hence, the arboricity of a graph, denoted by $\Upsilon(G)$, is the minimum number of trees whose union is G. Nash-Williams [98] gave the exact solution for arboricity

$$\Upsilon(G) = \max \left\lceil \frac{m_H}{n_H - 1} \right\rceil,$$

where the maximum is taken over all nontrivial subgraphs H of G. The number of vertices and edges in H are denoted by n_H and m_H, respectively. Applying Nash-Williams’ result, Dean et al. [27] showed that $\Upsilon(G) \leq \lceil \sqrt{m/2} \rceil$. This gives also a lower bound for outerthickness.

Albertson et al. [4] have also presented several results concerning arboricity of r-inflated graphs among similar results for their thickness.

Trees can be further replaced by stars, caterpillars [89, 95, 92] or linear forests [87, 103]. (The bibliography concerning star, caterpillar, and linear arboricity is by no means complete.)

5 Conjectures

Computational experiments [55] have shown that Theorem 2.4 holds for all $m < 30$. For example, it was unknown if $\Theta(K_{17,21})$ is equal to 5 or 6 (the thickness of $K_{13,17}$ is at least 5 due to Euler’s polyhedron formula and it cannot be more than $\Theta(K_{18,21}) = 6$ or $\Theta(K_{17,22}) = 6$). In general, the unknown values of $\Theta(K_{m,n})$ are quite rare, for an arbitrary m, there are fewer than $m/4$ unsolved cases [12].

Conjecture 5.1. The claim of Theorem 2.4 holds for all complete bipartite graphs.
Dean et al. [27] have conjectured a tighter upper bound for the thickness as a function of the number of edges in the graph.

Conjecture 5.2 ([27]). \(\Theta(G) \leq \sqrt{m/16} + O(1) \) for an arbitrary graph \(G \) with \(m \) edges.

The complexity status of outerthickness is open, but since thickness and maximum planar subgraph problem are \(NP \)-complete, we conjecture that determining the outerthickness of a graph is also \(NP \)-complete.

Conjecture 5.3. Determining the outerthickness of a graph is \(NP \)-complete.

Dean et al. [27] gave an upper bound for thickness as a function of the number of edges (Theorem 2.10). If their proof technique is applied straightforward to outerplanar graphs, the bound \(\lceil \sqrt{m/2} + 1/2 \rceil \) is obtained. The upper bound is of the right order, since the outerthickness of the complete graph with \(n \) vertices is \(O(n) \). On the other hand, since \(\Theta_o(K_n) \) is approximately \(\sqrt{m/8} \) and \(\Theta_o(K_{n,n}) \) is approximately \(\sqrt{m/9} \), it seems that the constant is not the best possible. We conjecture the following upper bound for outerthickness.

Conjecture 5.4. \(\Theta_o(G) \leq \sqrt{m/8} + O(1) \) for an arbitrary graph \(G \) with \(m \) edges.

Dean et al. [25] proposed an open problem related on bar k-visibility graphs.

Conjecture 5.5 ([25]). Bar k-visibility graphs have thickness no greater than \(k + 1 \).

Also Albertson et al. [4] have listed some open problems.

6 Related problems

We can also consider other types of subgraphs whose union is the given graph. For an interested reader, we recommend an article by Dujmovic and Wood [28] for further references related to these subgraph classes.

The star arboricity of a graph \(G \) is the minimum number of stars whose union is \(G \). Similarly, the linear arboricity is the minimum number of linear forests. Since its definition in 1981 [76], the so called Linear Arboricity Conjecture has been the concern of numerous theoretical works. The conjecture states that the linear arboricity of an \(r \)-regular graph is \(\lceil \frac{r+1}{2} \rceil \).
In the book thickness of a graph, which is sometimes called the pagenu-
mer, stacknumber, or real linear thickness, vertices are placed on a line (the
spine) and edges are routed without intersections via half-planes (pages) hav-
ing common boundary with the spine. Book thickness indicates the minimum
number of needed pages.

Geometric thickness is the smallest number of layers such that the graph
can be drawn in the plane with straight line edges and each edge assigned to
a layer such that no two edges cross. Geometric outer thickness, geometric
arboricity and geometric star-arboricity are defined analogously.

Book thickness and geometric thickness are widely used both in various
theoretical considerations and in applications, while star and linear arboric-
ities have gain mainly theoretical interest.

7 Thickness publications

Notice that the bibliography contains several entries not cited in the text and
that the entries in the bibliography can contain results related to the other
invariants.

and chromatic number of r-inflated graphs. *Discrete Mathematics*,

graphs: Arboricity, thickness, chromatic number and fractional chro-

8 Outerthickness publications

9 Arboricity publications

